This is an outstanding overview of the history of the Earth from a unique planetary perspective for introductory courses in the earth sciences. The book approaches Earth history as an evolution, encompassing the origin of the cosmos through the inner working of living cells. Earth: Evolution of a Habitable Planet tells how the Earth has come to its present state, why it differs from its neighboring planets, what life's place is in Earth's history, and how humanity affects the processes that make our planet livable. Today's human influences are contemplated in the context of natural changes on Earth. This book brings a fresh perspective to the study of the Earth for students who wish to learn how our planet evolved to its present form.
Questions about the origin and nature of Earth and the life on it have long preoccupied human thought and the scientific endeavor. Deciphering the planet's history and processes could improve the ability to predict catastrophes like earthquakes and volcanic eruptions, to manage Earth's resources, and to anticipate changes in climate and geologic processes. At the request of the U.S. Department of Energy, National Aeronautics and Space Administration, National Science Foundation, and U.S. Geological Survey, the National Research Council assembled a committee to propose and explore grand questions in geological and planetary science. This book captures, in a series of questions, the essential scientific challenges that constitute the frontier of Earth science at the start of the 21st century.
A classic introduction to the story of Earth's origin and evolution—revised and expanded for the twenty-first century Since its first publication more than twenty-five years ago, How to Build a Habitable Planet has established a legendary reputation as an accessible yet scientifically impeccable introduction to the origin and evolution of Earth, from the Big Bang through the rise of human civilization. This classic account of how our habitable planet was assembled from the stuff of stars introduced readers to planetary, Earth, and climate science by way of a fascinating narrative. Now this great book has been made even better. Harvard geochemist Charles Langmuir has worked closely with the original author, Wally Broecker, one of the world's leading Earth scientists, to revise and expand the book for a new generation of readers for whom active planetary stewardship is becoming imperative. Interweaving physics, astronomy, chemistry, geology, and biology, this sweeping account tells Earth’s complete story, from the synthesis of chemical elements in stars, to the formation of the Solar System, to the evolution of a habitable climate on Earth, to the origin of life and humankind. The book also addresses the search for other habitable worlds in the Milky Way and contemplates whether Earth will remain habitable as our influence on global climate grows. It concludes by considering the ways in which humankind can sustain Earth’s habitability and perhaps even participate in further planetary evolution. Like no other book, How to Build a Habitable Planet provides an understanding of Earth in its broadest context, as well as a greater appreciation of its possibly rare ability to sustain life over geologic time. Leading schools that have ordered, recommended for reading, or adopted this book for course use: Arizona State University Brooklyn College CUNY Columbia University Cornell University ETH Zurich Georgia Institute of Technology Harvard University Johns Hopkins University Luther College Northwestern University Ohio State University Oxford Brookes University Pan American University Rutgers University State University of New York at Binghamton Texas A&M University Trinity College Dublin University of Bristol University of California-Los Angeles University of Cambridge University Of Chicago University of Colorado at Boulder University of Glasgow University of Leicester University of Maine, Farmington University of Michigan University of North Carolina at Chapel Hill University of North Georgia University of Nottingham University of Oregon University of Oxford University of Portsmouth University of Southampton University of Ulster University of Victoria University of Wyoming Western Kentucky University Yale University
From Habitability to Life on Mars explores the current state of knowledge and questions on the past habitability of Mars and the role that rapid environmental changes may have played in the ability of prebiotic chemistry to transition to life. It investigates the role that such changes may have played in the preservation of biosignatures in the geological record and what this means for exploration strategies. Throughout the book, the authors show how the investigation of terrestrial analogs to early Martian habitats under various climates and environmental extremes provide critical clues to understand where, what and how to search for biosignatures on Mars. The authors present an introduction to the newest developments and state-of-the-art remote and in situ detection strategies and technologies that are being currently developed to support the upcoming ExoMars and Mars 2020 missions. They show how the current orbital and ground exploration is guiding the selection for future landing sites. Finally, the book concludes by discussing the critical question of the implications and ethics of finding life on Mars. - Edited by the lead on a NASA project that searches for habitability and life on Mars leading to the Mars 2020 mission - Presents the evidence, questions and answers we have today (including a summary of the current state of knowledge in advance of the ESA ExoMars and NASA Mars 2020 missions) - Includes contributions from authors directly involved in past, current and upcoming Mars missions - Provides key information as to how Mars rovers, such as ExoMars and Mars 2020, will address the search for life on Mars with their instrumentation
The marvelous microbes that made life on Earth possible and support our very existence For almost four billion years, microbes had the primordial oceans all to themselves. The stewards of Earth, these organisms transformed the chemistry of our planet to make it habitable for plants, animals, and us. Life's Engines takes readers deep into the microscopic world to explore how these marvelous creatures made life on Earth possible—and how human life today would cease to exist without them. Paul Falkowski looks "under the hood" of microbes to find the engines of life, the actual working parts that do the biochemical heavy lifting for every living organism on Earth. With insight and humor, he explains how these miniature engines are built—and how they have been appropriated by and assembled like Lego sets within every creature that walks, swims, or flies. Falkowski shows how evolution works to maintain this core machinery of life, and how we and other animals are veritable conglomerations of microbes. A vibrantly entertaining book about the microbes that support our very existence, Life's Engines will inspire wonder about these elegantly complex nanomachines that have driven life since its origin. It also issues a timely warning about the dangers of tinkering with that machinery to make it more "efficient" at meeting the ever-growing demands of humans in the coming century.
This book takes a long-term view of Earth's development as a habitable planet, incorporating physical, chemical and biological processes on the early Earth, through to human perturbations of the modern world and their implications for life in the future.
"Through the contributions of more than sixty leading experts in the field, Comparative Climatology of Terrestrial Planets sets forth the foundations for this emerging new science and brings the reader to the forefront of our current understanding of atmospheric formation and climate evolution"--Provided by publisher.
In recent years, planetary science has seen a tremendous growth in new knowledge. Deposits of water ice exist at the Moon's poles. Discoveries on the surface of Mars point to an early warm wet climate, and perhaps conditions under which life could have emerged. Liquid methane rain falls on Saturn's moon Titan, creating rivers, lakes, and geologic landscapes with uncanny resemblances to Earth's. Vision and Voyages for Planetary Science in the Decade 2013-2022 surveys the current state of knowledge of the solar system and recommends a suite of planetary science flagship missions for the decade 2013-2022 that could provide a steady stream of important new discoveries about the solar system. Research priorities defined in the report were selected through a rigorous review that included input from five expert panels. NASA's highest priority large mission should be the Mars Astrobiology Explorer Cacher (MAX-C), a mission to Mars that could help determine whether the planet ever supported life and could also help answer questions about its geologic and climatic history. Other projects should include a mission to Jupiter's icy moon Europa and its subsurface ocean, and the Uranus Orbiter and Probe mission to investigate that planet's interior structure, atmosphere, and composition. For medium-size missions, Vision and Voyages for Planetary Science in the Decade 2013-2022 recommends that NASA select two new missions to be included in its New Frontiers program, which explores the solar system with frequent, mid-size spacecraft missions. If NASA cannot stay within budget for any of these proposed flagship projects, it should focus on smaller, less expensive missions first. Vision and Voyages for Planetary Science in the Decade 2013-2022 suggests that the National Science Foundation expand its funding for existing laboratories and establish new facilities as needed. It also recommends that the program enlist the participation of international partners. This report is a vital resource for government agencies supporting space science, the planetary science community, and the public.
Is the Earth the right model and the only universal key to understand habitability, the origin and maintenance of life? Are we able to detect life elsewhere in the universe by the existing techniques and by the upcoming space missions? This book tries to give answers by focusing on environmental properties, which are playing a major role in influencing planetary surfaces or the interior of planets and satellites. The book gives insights into the nature of planets or satellites and their potential to harbor life. Different scientific disciplines are searching for the clues to classify planetary bodies as a habitable object and what kind of instruments and what kind of space exploration missions are necessary to detect life. Results from model calculations, field studies and from laboratory studies in planetary simulation facilities will help to elucidate if some of the planets and satellites in our solar system as well as in extra-solar systems are potentially habitable for life.