One-Dimensional Dynamics

One-Dimensional Dynamics

Author: Welington de Melo

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 616

ISBN-13: 3642780431

DOWNLOAD EBOOK

One-dimensional dynamics has developed in the last decades into a subject in its own right. Yet, many recent results are inaccessible and have never been brought together. For this reason, we have tried to give a unified ac count of the subject and complete proofs of many results. To show what results one might expect, the first chapter deals with the theory of circle diffeomorphisms. The remainder of the book is an attempt to develop the analogous theory in the non-invertible case, despite the intrinsic additional difficulties. In this way, we have tried to show that there is a unified theory in one-dimensional dynamics. By reading one or more of the chapters, the reader can quickly reach the frontier of research. Let us quickly summarize the book. The first chapter deals with circle diffeomorphisms and contains a complete proof of the theorem on the smooth linearizability of circle diffeomorphisms due to M. Herman, J.-C. Yoccoz and others. Chapter II treats the kneading theory of Milnor and Thurstonj also included are an exposition on Hofbauer's tower construction and a result on fuB multimodal families (this last result solves a question posed by J. Milnor).


Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory

Author: Yuri Kuznetsov

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 648

ISBN-13: 1475739788

DOWNLOAD EBOOK

Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.


Feedback Systems

Feedback Systems

Author: Karl Johan Åström

Publisher: Princeton University Press

Published: 2021-02-02

Total Pages:

ISBN-13: 069121347X

DOWNLOAD EBOOK

The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory


Lectures on Symplectic Geometry

Lectures on Symplectic Geometry

Author: Ana Cannas da Silva

Publisher: Springer

Published: 2004-10-27

Total Pages: 240

ISBN-13: 354045330X

DOWNLOAD EBOOK

The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.


Optimal Transport

Optimal Transport

Author: Cédric Villani

Publisher: Springer Science & Business Media

Published: 2008-10-26

Total Pages: 970

ISBN-13: 3540710507

DOWNLOAD EBOOK

At the close of the 1980s, the independent contributions of Yann Brenier, Mike Cullen and John Mather launched a revolution in the venerable field of optimal transport founded by G. Monge in the 18th century, which has made breathtaking forays into various other domains of mathematics ever since. The author presents a broad overview of this area, supplying complete and self-contained proofs of all the fundamental results of the theory of optimal transport at the appropriate level of generality. Thus, the book encompasses the broad spectrum ranging from basic theory to the most recent research results. PhD students or researchers can read the entire book without any prior knowledge of the field. A comprehensive bibliography with notes that extensively discuss the existing literature underlines the book’s value as a most welcome reference text on this subject.


An Introduction To Mathematical Billiards

An Introduction To Mathematical Billiards

Author: Utkir A Rozikov

Publisher: World Scientific

Published: 2018-12-06

Total Pages: 223

ISBN-13: 9813276487

DOWNLOAD EBOOK

'This book offers one of the few places where a collection of results from the literature can be found … The book has an extensive bibliography … It is very nice to have the compendium of results that is presented here.'zbMATHA mathematical billiard is a mechanical system consisting of a billiard ball on a table of any form (which can be planar or even a multidimensional domain) but without billiard pockets. The ball moves and its trajectory is defined by the ball's initial position and its initial speed vector. The ball's reflections from the boundary of the table are assumed to have the property that the reflection and incidence angles are the same. This book comprehensively presents known results on the behavior of a trajectory of a billiard ball on a planar table (having one of the following forms: circle, ellipse, triangle, rectangle, polygon and some general convex domains). It provides a systematic review of the theory of dynamical systems, with a concise presentation of billiards in elementary mathematics and simple billiards related to geometry and physics.The description of these trajectories leads to the solution of various questions in mathematics and mechanics: problems related to liquid transfusion, lighting of mirror rooms, crushing of stones in a kidney, collisions of gas particles, etc. The analysis of billiard trajectories can involve methods of geometry, dynamical systems, and ergodic theory, as well as methods of theoretical physics and mechanics, which has applications in the fields of biology, mathematics, medicine, and physics.


Ordinary Differential Equations and Dynamical Systems

Ordinary Differential Equations and Dynamical Systems

Author: Gerald Teschl

Publisher: American Mathematical Society

Published: 2024-01-12

Total Pages: 370

ISBN-13: 147047641X

DOWNLOAD EBOOK

This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.