Towards Optimization of Nuclear Waste Glass

Towards Optimization of Nuclear Waste Glass

Author:

Publisher:

Published: 1994

Total Pages: 11

ISBN-13:

DOWNLOAD EBOOK

Vitrification of both low- and high-level wastes from 177 tanks at Hanford poses a great challenge to glass makers, whose task is to formulate a system of glasses that are acceptable to the federal repository for disposal. The enormous quantity of the waste requires a glass product of the lowest possible volume. The incomplete knowledge of waste composition, its variability, and lack of an appropriate vitrification technology further complicates this difficult task. A simple relationship between the waste loading and the waste glass volume is presented and applied to the predominantly refractory (usually high-activity) and predominantly alkaline (usually low-activity) waste types. Three factors that limit waste loading are discussed, namely product acceptability, melter processing, and model validity. Glass formulation and optimization problems are identified and a broader approach to uncertainties is suggested.


WASTE LOADING ENHANCEMENTS FOR HANFORD LAW GLASSES VLS-10R1790-1 FINAL REPORT REV 0 12

WASTE LOADING ENHANCEMENTS FOR HANFORD LAW GLASSES VLS-10R1790-1 FINAL REPORT REV 0 12

Author:

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

About 50 million gallons of high-level mixed waste is currently stored in underground tanks at The United States Department of Energy's (DOE's) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE's Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity waste fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed in an engineered facility on the Hanford site while the IHLW product will likely be directed to a national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal. The Office of River Protection is currently examining options to optimize the Low Activity Waste (LAW) Facility and LAW glass waste form. One option under evaluation is to enhance the waste processing rate of the vitrification plant currently under construction. It is likely that the capacity of the LAW vitrification plant can be increased incrementally by implementation of a variety of low-risk, high-probability changes, either separately or in combination. These changes include: (1) Operating at the higher processing rates demonstrated at the LAW pilot melter; (2) Increasing the glass pool surface area within the existing external melter envelope; (3) Increasing the glass waste loading; and (4) Operating the melter at a slightly higher temperature. The Vitreous State Laboratory (VSL) of The Catholic University of America (CUA) and Energy Solutions, Inc. have evaluated several of these potential incremental improvements for ORP in support of its evaluation of WTP LAW facility optimization. Some of these incremental improvements have been tested at VSL including increasing the waste loading, increasing the processing temperature, and increasing the fraction of the sulfur in the feed that is partitioned to the off-gas (in the event that a decision is made to break the present WTP recycle loop). These approaches successfully demonstrated increases in glass production rates and significant increases in sulfate incorporation at the nominal melter operating temperature of 1150 C and at slightly higher than nominal glass processing temperatures. Subsequent tests demonstrated further enhancement of glass formulations for all of the LAW waste envelopes, thereby reducing the amount of glass to be produced by the WTP for the same amount of waste processed. The next phase of testing determined the applicability of these improvements over the expected range of sodium and sulfur concentrations for Hanford LAW. This approach was subsequently applied to an even wider range of LAW wastes types, including those with high potassium concentration. The feasibility of formulating higher waste loading glasses using SnO2 and V2O5 in place of Fe2O3 and TiO2 as glass former additives was also evaluated. The present report provides data from investigation of the effects of magnesium content (up to (almost equal to)10 wt%) on LAW glass properties and from work to identify improved high waste loading glass formulations that meets all processing and product quality requirements for two waste compositions. The scope of testing is detailed in the Test Plan for this work. A glass composition previously developed and tested at VSL for LAW from tank AN-105 (LAWA187) was varied by substituting Mg for other glass former additives such as Ca, B and Si in an attempt to formulate a glass with improved properties, such as higher waste loading and greater sulfur tolerance. The results were used to reformulate another glass (ORPLG9) developed for LAW from tank AP-101 that contains high concentrations of alkalis (Na and K). Glass formulation goals for this waste were to increase the sulfur tolerance of the glass as well as to decrease refractory corrosion. Each of the two final glass compositions was evaluated to determine the maximum amount of sulfur that can be incorporated into the glass through melter testing. The results from these tests together with earlier work for ORP were evaluated to develop recommendations for the work scope necessary to modify and update the WTP LAW glass formulation correlation algorithm.


HIGH ALUMINUM HLW GLASSES FOR HANFORDS WTP.

HIGH ALUMINUM HLW GLASSES FOR HANFORDS WTP.

Author:

Publisher:

Published: 2009

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The world's largest radioactive waste vitrification facility is now under construction at the United State Department of Energy's (DOE's) Hanford site. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is designed to treat nearly 53 million gallons of mixed hazardous and radioactive waste now residing in 177 underground storage tanks. This multi-decade processing campaign will be one of the most complex ever undertaken because of the wide chemical and physical variability of the waste compositions generated during the cold war era that are stored at Hanford. The DOE Office of River Protection (ORP) has initiated a program to improve the long-term operating efficiency of the WTP vitrification plants with the objective of reducing the overall cost of tank waste treatment and disposal and shortening the duration of plant operations. Due to the size, complexity and duration of the WTP mission, the lifecycle operating and waste disposal costs are substantial. As a result, gains in High Level Waste (HLW) and Low Activity Waste (LAW) waste loadings, as well as increases in glass production rate, which can reduce mission duration and glass volumes for disposal, can yield substantial overall cost savings. EnergySolutions and its long-term research partner, the Vitreous State Laboratory (VSL) of the Catholic University of America, have been involved in a multi-year ORP program directed at optimizing various aspects of the HLW and LAW vitrification flow sheets. A number of Hanford HLW streams contain high concentrations of aluminum, which is challenging with respect to both waste loading and processing rate. Therefore, a key focus area of the ORP vitrification process optimization program at EnergySolutions and VSL has been development of HLW glass compositions that can accommodate high Al2O3 concentrations while maintaining high processing rates in the Joule Heated Ceramic Melters (JHCMs) used for waste vitrification at the WTP. This paper, reviews the achievements of this program with emphasis on the recent enhancements in Al2O3 loadings in HLW glass and its processing characteristics. Glass formulation development included crucible-scale preparation and characterization of glass samples to assess compliance with all melt processing and product quality requirements, followed by small-scale screening tests to estimate processing rates. These results were used to down-select formulations for subsequent engineering-scale melter testing. Finally, further testing was performed on the DM1200 vitrification system installed at VSL, which is a one-third scale (1.20 m2) pilot melter for the WTP HLW melters and which is fitted with a fully prototypical off-gas treatment system. These tests employed glass formulations with high waste loadings and Al2O3 contents of (almost equal to)25 wt%, which represents a near-doubling of the present WTP baseline maximum Al2O3 loading. In addition, these formulations were processed successfully at glass production rates that exceeded the present requirements for WTP HLW vitrification by up to 88%. The higher aluminum loading in the HLW glass has an added benefit in that the aluminum leaching requirements in pretreatment are reduced, thus allowing less sodium addition in pretreatment, which in turn reduces the amount of LAW glass to be produced at the WTP. The impact of the results from this ORP program in reducing the overall cost and schedule for the Hanford waste treatment mission will be discussed.


Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

Author:

Publisher:

Published: 2015

Total Pages: 44

ISBN-13:

DOWNLOAD EBOOK

The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, key product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule. The purpose of this advanced LAW glass research and development plan is to identify the near-term, mid-term, and longer-term research and development activities required to develop and validate advanced LAW glasses, property-composition models and their uncertainties, and an advanced glass algorithm to support WTP facility operations, including both Direct Feed LAW and full pretreatment flowsheets. Data are needed to develop, validate, and implement 1) new glass property-composition models and 2) a new glass formulation algorithm. Hence, this plan integrates specific studies associated with increasing the Na2O and SO3/halide concentrations in glass, because these components will ultimately dictate waste loadings for LAW vitrification. Of equal importance is the development of an efficient and economic strategy for 99Tc management. Specific and detailed studies are being implemented to understand the fate of Tc throughout the WTP flowsheet and the underlying mechanisms that dictate its partitioning between streams within the LAW vitrification facility. These studies are aimed at increasing the single-pass Tc retention in glass and the potential use of high-temperature mineral phases to capture Tc. The Tc-bearing mineral phases would be thermally stable and resistant to Tc release during feed melting reactions or they could serve as alternative waste forms. The LAW glass research and development is focused on reducing the total volume of LAW glass produced and minimizing the impact of (or potentially eliminating) the need for recycle.


NEXT GENERATION MELTER(S) FOR VITRIFICATION OF HANFORD WASTE STATUS AND DIRECTION.

NEXT GENERATION MELTER(S) FOR VITRIFICATION OF HANFORD WASTE STATUS AND DIRECTION.

Author:

Publisher:

Published: 2011

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Vitrification technology has been selected to treat high-level waste (HLW) at the Hanford Site, the West Valley Demonstration Project and the Savannah River Site (SRS), and low activity waste (LAW) at Hanford. In addition, it may potentially be applied to other defense waste streams such as sodium bearing tank waste or calcine. Joule-heated melters (already in service at SRS) will initially be used at the Hanford Site's Waste Treatment and Immobilization Plant (WTP) to vitrify tank waste fractions. The glass waste content and melt/production rates at WTP are limited by the current melter technology. Significant reductions in glass volumes and mission life are only possible with advancements in melter technology coupled with new glass formulations. The Next Generation Melter (NGM) program has been established by the U.S. Department of Energy's (DOE's), Environmental Management Office of Waste Processing (EM-31) to develop melters with greater production capacity (absolute glass throughput rate) and the ability to process melts with higher waste fractions. Advanced systems based on Joule-Heated Ceramic Melter (JHCM) and Cold Crucible Induction Melter (CCIM) technologies will be evaluated for HLW and LAW processing. Washington River Protection Solutions (WRPS), DOE's tank waste contractor, is developing and evaluating these systems in cooperation with EM-31, national and university laboratories, and corporate partners. A primary NGM program goal is to develop the systems (and associated flowsheets) to Technology Readiness Level 6 by 2016. Design and testing are being performed to optimize waste glass process envelopes with melter and balance of plant requirements. A structured decision analysis program will be utilized to assess the performance of the competing melter technologies. Criteria selected for the decision analysis program will include physical process operations, melter performance, system compatibility and other parameters.


The Effect of Vitrification Technology on Waste Loading

The Effect of Vitrification Technology on Waste Loading

Author:

Publisher:

Published: 1994

Total Pages: 10

ISBN-13:

DOWNLOAD EBOOK

Radioactive wastes on the Hanford Site are going to be permanently disposed of by incorporation into a durable glass. These wastes will be separated into low and high-level portions, and then vitrified. The low-level waste (LLW) is water soluble. Its vitrifiable part (other than off-gas) contains approximately 80 wt% Na2O, the rest being Al2O3, P2O5, K2O, and minor components. The challenge is to formulate durable LLW glasses with as high Na2O content as possible by optimizing the additions of SiO2, Al2O3, B2O3, CaO, and ZrO2. This task will not be simple, considering the non-linear and interactive nature of glass properties as a function of composition. Once developed, the LLW glass, being similar in composition to commercial glasses, is unlikely to cause major processing problems, such as crystallization or molten salt segregation. For example, inexpensive LLW glass can be produced in a high-capacity Joule-heated melter with a cold cap to minimize volatilization. The high-level waste (HLW) consists of water-insoluble sludge (Fe2O3, Al2O3, ZrO2, Cr2O3, NiO, and others) and a substantial water-soluble residue (Na2O). Most of the water-insoluble components are refractory; i.e., their melting points are above the glass melting temperature. With regard to product acceptability, the maximum loading of Hanford HLW in the glass is limited by product durability, not by radiolytic heat generation. However, this maximum may not be achievable because of technological constraints imposed by melter feed rheology, frit properties, and glass melter limits. These restrictions are discussed in this paper. 38 refs.