Geometry Illinois Edition

Geometry Illinois Edition

Author: McGraw-Hill/Glencoe

Publisher: Glencoe Mathematics

Published: 2005

Total Pages: 0

ISBN-13: 9780078652493

DOWNLOAD EBOOK

A flexible program with the solid content students need Glencoe Geometry is the leading geometry program on the market. Algebra and applications are embedded throughout the program and an introduction to geometry proofs begins in Chapter 2.. .


Exploring Geometry

Exploring Geometry

Author: Michael Hvidsten

Publisher: CRC Press

Published: 2016-12-08

Total Pages: 532

ISBN-13: 1498760988

DOWNLOAD EBOOK

Exploring Geometry, Second Edition promotes student engagement with the beautiful ideas of geometry. Every major concept is introduced in its historical context and connects the idea with real-life. A system of experimentation followed by rigorous explanation and proof is central. Exploratory projects play an integral role in this text. Students develop a better sense of how to prove a result and visualize connections between statements, making these connections real. They develop the intuition needed to conjecture a theorem and devise a proof of what they have observed. Features: Second edition of a successful textbook for the first undergraduate course Every major concept is introduced in its historical context and connects the idea with real life Focuses on experimentation Projects help enhance student learning All major software programs can be used; free software from author


An Introduction to Complex Analysis and Geometry

An Introduction to Complex Analysis and Geometry

Author: John P. D'Angelo

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 177

ISBN-13: 0821852744

DOWNLOAD EBOOK

Provides the reader with a deep appreciation of complex analysis and how this subject fits into mathematics. The first four chapters provide an introduction to complex analysis with many elementary and unusual applications. Chapters 5 to 7 develop the Cauchy theory and include some striking applications to calculus. Chapter 8 glimpses several appealing topics, simultaneously unifying the book and opening the door to further study.


Lectures on Poisson Geometry

Lectures on Poisson Geometry

Author: Marius Crainic

Publisher: American Mathematical Soc.

Published: 2021-10-14

Total Pages: 479

ISBN-13: 1470466678

DOWNLOAD EBOOK

This excellent book will be very useful for students and researchers wishing to learn the basics of Poisson geometry, as well as for those who know something about the subject but wish to update and deepen their knowledge. The authors' philosophy that Poisson geometry is an amalgam of foliation theory, symplectic geometry, and Lie theory enables them to organize the book in a very coherent way. —Alan Weinstein, University of California at Berkeley This well-written book is an excellent starting point for students and researchers who want to learn about the basics of Poisson geometry. The topics covered are fundamental to the theory and avoid any drift into specialized questions; they are illustrated through a large collection of instructive and interesting exercises. The book is ideal as a graduate textbook on the subject, but also for self-study. —Eckhard Meinrenken, University of Toronto


Helping Students Understand Geometry, Grades 7 - 8

Helping Students Understand Geometry, Grades 7 - 8

Author: Sandall

Publisher: Mark Twain Media

Published: 2008-08-28

Total Pages: 131

ISBN-13: 158037767X

DOWNLOAD EBOOK

Give geometry a go with students in grades 7 and up using Helping Students Understand Geometry. This 128-page book includes step-by-step instructions with examples, practice problems using the concepts, real-life applications, a list of symbols and terms, tips, and answer keys. The book supports NCTM standards and includes chapters on topics such as coordinates, angles, patterns and reasoning, triangles, polygons and quadrilaterals, and circles.


Differential Geometry

Differential Geometry

Author: Wolfgang Kühnel

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 394

ISBN-13: 0821839888

DOWNLOAD EBOOK

Our first knowledge of differential geometry usually comes from the study of the curves and surfaces in I\!\!R^3 that arise in calculus. Here we learn about line and surface integrals, divergence and curl, and the various forms of Stokes' Theorem. If we are fortunate, we may encounter curvature and such things as the Serret-Frenet formulas. With just the basic tools from multivariable calculus, plus a little knowledge of linear algebra, it is possible to begin a much richer and rewarding study of differential geometry, which is what is presented in this book. It starts with an introduction to the classical differential geometry of curves and surfaces in Euclidean space, then leads to an introduction to the Riemannian geometry of more general manifolds, including a look at Einstein spaces. An important bridge from the low-dimensional theory to the general case is provided by a chapter on the intrinsic geometry of surfaces. The first half of the book, covering the geometry of curves and surfaces, would be suitable for a one-semester undergraduate course. The local and global theories of curves and surfaces are presented, including detailed discussions of surfaces of rotation, ruled surfaces, and minimal surfaces. The second half of the book, which could be used for a more advanced course, begins with an introduction to differentiable manifolds, Riemannian structures, and the curvature tensor. Two special topics are treated in detail: spaces of constant curvature and Einstein spaces. The main goal of the book is to get started in a fairly elementary way, then to guide the reader toward more sophisticated concepts and more advanced topics. There are many examples and exercises to help along the way. Numerous figures help the reader visualize key concepts and examples, especially in lower dimensions. For the second edition, a number of errors were corrected and some text and a number of figures have been added.


Elementary Geometry for College Students

Elementary Geometry for College Students

Author: Daniel C. Alexander

Publisher: Cengage Learning

Published: 2010-01-01

Total Pages: 624

ISBN-13: 9781439047903

DOWNLOAD EBOOK

Building on the success of its first four editions, the Fifth Edition of this market-leading text covers the important principles and real-world applications of plane geometry, with a new chapter on locus and concurrence and by adding 150-200 new problems including 90 designed to be more rigorous. Strongly influenced by both NCTM and AMATYC standards, the text takes an inductive approach that includes integrated activities and tools to promote hands-on application and discovery. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.