Geometric Methods for Discrete Dynamical Systems

Geometric Methods for Discrete Dynamical Systems

Author: Robert W. Easton

Publisher: Oxford University Press, USA

Published: 1998

Total Pages: 172

ISBN-13: 0195085450

DOWNLOAD EBOOK

This book looks at dynamics as an iteration process where the output of a function is fed back as an input to determine the evolution of an initial state over time. The theory examines errors which arise from round-off in numerical simulations, from the inexactness of mathematical models used to describe physical processes, and from the effects of external controls. The author provides an introduction accessible to beginning graduate students and emphasizing geometric aspects of the theory. Conley's ideas about rough orbits and chain-recurrence play a central role in the treatment. The book will be a useful reference for mathematicians, scientists, and engineers studying this field, and an ideal text for graduate courses in dynamical systems.


Geometric Methods for Discrete Dynamical Systems

Geometric Methods for Discrete Dynamical Systems

Author: Robert W. Easton

Publisher: Oxford University Press

Published: 1998-02-26

Total Pages: 172

ISBN-13: 0195359046

DOWNLOAD EBOOK

This book looks at dynamics as an iteration process where the output of a function is fed back as an input to determine the evolution of an initial state over time. The theory examines errors which arise from round-off in numerical simulations, from the inexactness of mathematical models used to describe physical processes, and from the effects of external controls. The author provides an introduction accessible to beginning graduate students and emphasizing geometric aspects of the theory. Conley's ideas about rough orbits and chain-recurrence play a central role in the treatment. The book will be a useful reference for mathematicians, scientists, and engineers studying this field, and an ideal text for graduate courses in dynamical systems.


Geometric Methods for Discrete Dynamical Systems

Geometric Methods for Discrete Dynamical Systems

Author: Robert W. Easton

Publisher:

Published: 1998

Total Pages: 157

ISBN-13: 9781601299499

DOWNLOAD EBOOK

This book looks at dynamics as an iteration process where the output of a function is fed back as an input to determine the evolution of an initial state over time. The theory examines errors which arise from round-off in numerical simulations, from the inexactness of mathematical models used to describe physical processes, and from the effects of external controls. The author provides an introduction accessible to beginning graduate students and emphasizing geometric aspects of the theory. Conley's ideas about rough orbits and chain-recurrence play a central role in the treatment. The book wi.


Geometric Theory of Dynamical Systems

Geometric Theory of Dynamical Systems

Author: J. Jr. Palis

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 208

ISBN-13: 1461257034

DOWNLOAD EBOOK

... cette etude qualitative (des equations difj'erentielles) aura par elle-m me un inter t du premier ordre ... HENRI POINCARE, 1881. We present in this book a view of the Geometric Theory of Dynamical Systems, which is introductory and yet gives the reader an understanding of some of the basic ideas involved in two important topics: structural stability and genericity. This theory has been considered by many mathematicians starting with Poincare, Liapunov and Birkhoff. In recent years some of its general aims were established and it experienced considerable development. More than two decades passed between two important events: the work of Andronov and Pontryagin (1937) introducing the basic concept of structural stability and the articles of Peixoto (1958-1962) proving the density of stable vector fields on surfaces. It was then that Smale enriched the theory substantially by defining as a main objective the search for generic and stable properties and by obtaining results and proposing problems of great relevance in this context. In this same period Hartman and Grobman showed that local stability is a generic property. Soon after this Kupka and Smale successfully attacked the problem for periodic orbits. We intend to give the reader the flavour of this theory by means of many examples and by the systematic proof of the Hartman-Grobman and the Stable Manifold Theorems (Chapter 2), the Kupka-Smale Theorem (Chapter 3) and Peixoto's Theorem (Chapter 4). Several ofthe proofs we give vii Introduction Vlll are simpler than the original ones and are open to important generalizations.


Observer Design for Nonlinear Dynamical Systems

Observer Design for Nonlinear Dynamical Systems

Author: Driss Boutat

Publisher: Springer

Published: 2021-07-22

Total Pages: 192

ISBN-13: 9783030737412

DOWNLOAD EBOOK

This book presents a differential geometric method for designing nonlinear observers for multiple types of nonlinear systems, including single and multiple outputs, fully and partially observable systems, and regular and singular dynamical systems. It is an exposition of achievements in nonlinear observer normal forms. The book begins by discussing linear systems, introducing the concept of observability and observer design, and then explains the difficulty of those problems for nonlinear systems. After providing foundational information on the differential geometric method, the text shows how to use the method to address observer design problems. It presents methods for a variety of systems. The authors employ worked examples to illustrate the ideas presented. Observer Design for Nonlinear Dynamical Systems will be of interest to researchers, graduate students, and industrial professionals working with control of mechanical and dynamical systems.


Algebraic and Geometric Methods in Discrete Mathematics

Algebraic and Geometric Methods in Discrete Mathematics

Author: Heather A. Harrington

Publisher: American Mathematical Soc.

Published: 2017-03-16

Total Pages: 290

ISBN-13: 1470423219

DOWNLOAD EBOOK

This volume contains the proceedings of the AMS Special Session on Algebraic and Geometric Methods in Applied Discrete Mathematics, held on January 11, 2015, in San Antonio, Texas. The papers present connections between techniques from “pure” mathematics and various applications amenable to the analysis of discrete models, encompassing applications of combinatorics, topology, algebra, geometry, optimization, and representation theory. Papers not only present novel results, but also survey the current state of knowledge of important topics in applied discrete mathematics. Particular highlights include: a new computational framework, based on geometric combinatorics, for structure prediction from RNA sequences; a new method for approximating the optimal solution of a sum of squares problem; a survey of recent Helly-type geometric theorems; applications of representation theory to voting theory and game theory; a study of fixed points of tensors; and exponential random graph models from the perspective of algebraic statistics with applications to networks. This volume was written for those trained in areas such as algebra, topology, geometry, and combinatorics who are interested in tackling problems in fields such as biology, the social sciences, data analysis, and optimization. It may be useful not only for experts, but also for students who wish to gain an applied or interdisciplinary perspective.


Differential Geometry Applied To Dynamical Systems (With Cd-rom)

Differential Geometry Applied To Dynamical Systems (With Cd-rom)

Author: Jean-marc Ginoux

Publisher: World Scientific

Published: 2009-04-03

Total Pages: 341

ISBN-13: 9814467634

DOWNLOAD EBOOK

This book aims to present a new approach called Flow Curvature Method that applies Differential Geometry to Dynamical Systems. Hence, for a trajectory curve, an integral of any n-dimensional dynamical system as a curve in Euclidean n-space, the curvature of the trajectory — or the flow — may be analytically computed. Then, the location of the points where the curvature of the flow vanishes defines a manifold called flow curvature manifold. Such a manifold being defined from the time derivatives of the velocity vector field, contains information about the dynamics of the system, hence identifying the main features of the system such as fixed points and their stability, local bifurcations of codimension one, center manifold equation, normal forms, linear invariant manifolds (straight lines, planes, hyperplanes).In the case of singularly perturbed systems or slow-fast dynamical systems, the flow curvature manifold directly provides the slow invariant manifold analytical equation associated with such systems. Also, starting from the flow curvature manifold, it will be demonstrated how to find again the corresponding dynamical system, thus solving the inverse problem.


Dynamical Systems

Dynamical Systems

Author: Clark Robinson

Publisher: CRC Press

Published: 1998-11-17

Total Pages: 522

ISBN-13: 1482227878

DOWNLOAD EBOOK

Several distinctive aspects make Dynamical Systems unique, including: treating the subject from a mathematical perspective with the proofs of most of the results included providing a careful review of background materials introducing ideas through examples and at a level accessible to a beginning graduate student


Dynamical Systems

Dynamical Systems

Author: Jürgen Jost

Publisher: Springer Science & Business Media

Published: 2005-08-01

Total Pages: 218

ISBN-13: 9783540229087

DOWNLOAD EBOOK

Breadth of scope is unique Author is a widely-known and successful textbook author Unlike many recent textbooks on chaotic systems that have superficial treatment, this book provides explanations of the deep underlying mathematical ideas No technical proofs, but an introduction to the whole field that is based on the specific analysis of carefully selected examples Includes a section on cellular automata


Geometric Theory of Discrete Nonautonomous Dynamical Systems

Geometric Theory of Discrete Nonautonomous Dynamical Systems

Author: Christian Pötzsche

Publisher: Springer Science & Business Media

Published: 2010-09-17

Total Pages: 422

ISBN-13: 3642142575

DOWNLOAD EBOOK

The goal of this book is to provide an approach to the corresponding geometric theory of nonautonomous discrete dynamical systems in infinite-dimensional spaces by virtue of 2-parameter semigroups (processes).