Initially conceived as a methodology for the representation and manipulation of imprecise and vague information, fuzzy computation has found wide use in problems that fall well beyond its originally intended scope of application. Many scientists and engineers now use the paradigms of fuzzy computation to tackle problems that are either intractable
In recent years, a great number of publications have explored the use of genetic algorithms as a tool for designing fuzzy systems. Genetic Fuzzy Systems explores and discusses this symbiosis of evolutionary computation and fuzzy logic. The book summarizes and analyzes the novel field of genetic fuzzy systems, paying special attention to genetic algorithms that adapt and learn the knowledge base of a fuzzy-rule-based system. It introduces the general concepts, foundations and design principles of genetic fuzzy systems and covers the topic of genetic tuning of fuzzy systems. It also introduces the three fundamental approaches to genetic learning processes in fuzzy systems: the Michigan, Pittsburgh and Iterative-learning methods. Finally, it explores hybrid genetic fuzzy systems such as genetic fuzzy clustering or genetic neuro-fuzzy systems and describes a number of applications from different areas. Genetic Fuzzy System represents a comprehensive treatise on the design of the fuzzy-rule-based systems using genetic algorithms, both from a theoretical and a practical perspective. It is a valuable compendium for scientists and engineers concerned with research and applications in the domain of fuzzy systems and genetic algorithms.
Evolutionary computing paradigms offer robust and powerful adaptive search mechanisms for system design. This book’s thirteen chapters cover a wide area of topics in evolutionary computing and applications, including an introduction to evolutionary computing in system design; evolutionary neuro-fuzzy systems; and evolution of fuzzy controllers. The book will be useful to researchers in intelligent systems with interest in evolutionary computing, as well as application engineers and system designers.
Optimization, simulation and control play an increasingly important role in science and industry. Because of their numerous applications in various disciplines, research in these areas is accelerating at a rapid pace. This volume brings together the latest developments in these areas of research as well as presents applications of these results to a wide range of real-world problems. The book is composed of invited contributions by experts from around the world who work to develop and apply new optimization, simulation and control techniques either at a theoretical level or in practice. Some key topics presented include: equilibrium problems, multi-objective optimization, variational inequalities, stochastic processes, numerical analysis, optimization in signal processing, and various other interdisciplinary applications. This volume can serve as a useful resource for researchers, practitioners, and advanced graduate students of mathematics and engineering working in research areas where results in optimization, simulation and control can be applied.
Since time immemorial, vision in general and images in particular have played an important and essential role in human life. Nowadays, the field of image processing also has numerous scientific, commercial, industrial and military applications. All these applications result from the interaction between fun damental scientific research on the one hand, and the development of new and high-standard technology on the other hand. Regarding the scientific com ponent, quite recently the scientific community became familiar with "fuzzy techniques" in image processing, which make use of the framework of fuzzy sets and related theories. The theory of fuzzy sets was initiated in 1965 by Zadeh, and is one of the most developed models to treat imprecision and uncertainty. Instead of the classical approach that an object belongs or does not belong to a set, the concept of a fuzzy set allows a gradual transition from membership to nonmembership, providing partial degrees of member ship. Fuzzy techniques are often complementary to existing techniques and can contribute to the development of better and more robust methods, as has already been illustrated in numerous scientific branches. With this vol ume, we want to demonstrate that the introduction and application of fuzzy techniques can also be very successful in the area of image processing. This book contains high-quality contributions of over 30 field experts, covering a wide range of both theoretical and practical applications of fuzzy techniques in image processing.
Ever since fuzzy logic was introduced by Lotfi Zadeh in the mid-sixties and genetic algorithms by John Holland in the early seventies, these two fields widely been subjects of academic research the world over. During the last few years, they have been experiencing extremely rapid growth in the industrial world, where they have been shown to be very effective in solving real-world problems. These two substantial fields, together with neurocomputing techniques, are recognized as major parts of soft computing: a set of computing technologies already riding the waves of the next century to produce the human-centered intelligent systems of tomorrow; the collection of papers presented in this book shows the way. The book also contains an extensive bibliography on fuzzy logic and genetic algorithms.
Approximate reasoning is a key motivation in fuzzy sets and possibility theory. This volume provides a coherent view of this field, and its impact on database research and information retrieval. First, the semantic foundations of approximate reasoning are presented. Special emphasis is given to the representation of fuzzy rules and specialized types of approximate reasoning. Then syntactic aspects of approximate reasoning are surveyed and the algebraic underpinnings of fuzzy consequence relations are presented and explained. The second part of the book is devoted to inductive and neuro-fuzzy methods for learning fuzzy rules. It also contains new material on the application of possibility theory to data fusion. The last part of the book surveys the growing literature on fuzzy information systems. Each chapter contains extensive bibliographical material. Fuzzy Sets in Approximate Reasoning and Information Systems is a major source of information for research scholars and graduate students in computer science and artificial intelligence, interested in human information processing.
This book provides a thorough overview of recent methods using higher level information (object or scene level) for advanced tasks such as image understanding along with their applications to medical images. Advanced methods for fuzzy image processing and understanding are presented, including fuzzy spatial objects, geometry and topology, mathematical morphology, machine learning, verbal descriptions of image content, fusion, spatial relations, and structural representations. For each methodological aspect covered, illustrations from the medical imaging domain are provided. This is an ideal book for graduate students and researchers in the field of medical image processing.
1. When I was asked by the editors of this book to write a foreword, I was seized by panic. Obviously, neither I am an expert in Knowledge Representation in Fuzzy Databases nor I could have been beforehand unaware that the book's contributors would be some of the most outstanding researchers in the field. However, Amparo Vila's gentle insistence gradually broke down my initial resistance, and panic then gave way to worry. Which paving stones did I have at my disposal for making an entrance to the book? After thinking about it for some time, I concluded that it would be pretentious on my part to focus on the subjects which are dealt with directly in the contributions presented, and that it would instead be better to confine myself to making some general reflections on knowledge representation given by imprecise information using fuzzy sets; reflections which have been suggested to me by some words in the following articles such as: graded notions, fuzzy objects, uncertainty, fuzzy implications, fuzzy inference, empty intersection, etc.