Fundamentals of Dynamic Geometry
Author: Paul Haralyi Fejér
Publisher:
Published: 1981
Total Pages: 80
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Paul Haralyi Fejér
Publisher:
Published: 1981
Total Pages: 80
ISBN-13:
DOWNLOAD EBOOKAuthor: Jürgen Richter-Gebert
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 153
ISBN-13: 3642583180
DOWNLOAD EBOOKCinderella is a unique, technically very sophisticated teachware for geometry that will be used as a tool by students learning Euclidean, projective, spherical and hyperbolic geometry, as well as in geometric research. Moreover, it can also serve as an authors' tool to design web pages with interactive constructions or even complete geometry exercises.
Author: Gabriele Kaiser
Publisher: Springer
Published: 2018-02-06
Total Pages: 786
ISBN-13: 9783319721699
DOWNLOAD EBOOKThe book presents the Invited Lectures given at 13th International Congress on Mathematical Education (ICME-13). ICME-13 took place from 24th- 31st July 2016 at the University of Hamburg in Hamburg (Germany). The congress was hosted by the Society of Didactics of Mathematics (Gesellschaft für Didaktik der Mathematik - GDM) and took place under the auspices of the International Commission on Mathematical Instruction (ICMI). ICME-13 – the biggest ICME so far - brought together about 3500 mathematics educators from 105 countries, additionally 250 teachers from German speaking countries met for specific activities. The scholars came together to share their work on the improvement of mathematics education at all educational levels.. The papers present the work of prominent mathematics educators from all over the globe and give insight into the current discussion in mathematics education. The Invited Lectures cover a wide spectrum of topics, themes and issues and aim to give direction to future research towards educational improvement in the teaching and learning of mathematics education. This book is of particular interest to researchers, teachers and curriculum developers in mathematics education.
Author: Ya. B. Pesin
Publisher: American Mathematical Soc.
Published: 2009
Total Pages: 334
ISBN-13: 0821848895
DOWNLOAD EBOOKBoth fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular 'chaotic' motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them. The first half of the book introduces some of the key ideas in fractal geometry and dimension theory - Cantor sets, Hausdorff dimension, box dimension - using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures and of the relationship between dimension, entropy, and Lyapunov exponents. In the second half of the book some examples of dynamical systems are considered and various phenomena of chaotic behaviour are discussed, including bifurcations, hyperbolicity, attractors, horseshoes, and intermittent and persistent chaos. These phenomena are naturally revealed in the course of our study of two real models from science - the FitzHugh - Nagumo model and the Lorenz system of differential equations. This book is accessible to undergraduate students and requires only standard knowledge in calculus, linear algebra, and differential equations. Elements of point set topology and measure theory are introduced as needed. This book is a result of the MASS course in analysis at Penn State University in the fall semester of 2008.
Author: J.M. Selig
Publisher: Springer Science & Business Media
Published: 2013-03-09
Total Pages: 273
ISBN-13: 1475724845
DOWNLOAD EBOOKThe main aim of this book is to introduce Lie groups and allied algebraic and geometric concepts to a robotics audience. These topics seem to be quite fashionable at the moment, but most of the robotics books that touch on these topics tend to treat Lie groups as little more than a fancy notation. I hope to show the power and elegance of these methods as they apply to problems in robotics. A subsidiary aim of the book is to reintroduce some old ideas by describing them in modem notation, particularly Study's Quadric-a description of the group of rigid motions in three dimensions as an algebraic variety (well, actually an open subset in an algebraic variety)-as well as some of the less well known aspects of Ball's theory of screws. In the first four chapters, a careful exposition of the theory of Lie groups and their Lie algebras is given. Except for the simplest examples, all examples used to illustrate these ideas are taken from robotics. So, unlike most standard texts on Lie groups, emphasis is placed on a group that is not semi-simple-the group of proper Euclidean motions in three dimensions. In particular, the continuous subgroups of this group are found, and the elements of its Lie algebra are identified with the surfaces of the lower Reuleaux pairs. These surfaces were first identified by Reuleaux in the latter half of the 19th century.
Author: Gerry Stahl
Publisher: Cambridge University Press
Published: 2016
Total Pages: 295
ISBN-13: 1107127912
DOWNLOAD EBOOKThis study illustrates how groups learn through collaboration, mathematical discourse, and problem solving in a guided sequence of online topics.
Author: Judah L. Schwartz
Publisher: Routledge
Published: 2013-06-17
Total Pages: 267
ISBN-13: 1134758383
DOWNLOAD EBOOKThis volume is a case study of education reform and innovation using technology that examines the issue from a wide variety of perspectives. It brings together the views and experiences of software designers, curriculum writers, teachers and students, researchers and administrators. Thus, it stands in contrast to other analyses of innovation that tend to look through the particular prisms of research, classroom practice, or software design. The Geometric Supposer encourages a belief in a better tomorrow for schools. On its surface, the Geometric Supposer provides the means for radically altering the way in which geometry is taught and the quality of learning that can be achieved. At a deeper level, however, it suggests a powerful metaphor for improving education that can be played out in many different instructional contexts.
Author: Gerard Venema
Publisher:
Published: 2012
Total Pages: 0
ISBN-13: 9780136020585
DOWNLOAD EBOOKNormal 0 false false false Foundations of Geometry, Second Edition is written to help enrich the education of all mathematics majors and facilitate a smooth transition into more advanced mathematics courses. The text also implements the latest national standards and recommendations regarding geometry for the preparation of high school mathematics teachers--and encourages students to make connections between their college courses and classes they will later teach. This text's coverage begins with Euclid's Elements, lays out a system of axioms for geometry, and then moves on to neutral geometry, Euclidian and hyperbolic geometries from an axiomatic point of view, and then non-Euclidean geometry. Good proof-writing skills are emphasized, along with a historical development of geometry. The Second Edition streamlines and reorganizes material in order to reach coverage of neutral geometry as early as possible, adds more exercises throughout, and facilitates use of the open-source software Geogebra. This text is ideal for an undergraduate course in axiomatic geometry for future high school geometry teachers, or for any student who has not yet encountered upper-level math, such as real analysis or abstract algebra. It assumes calculus and linear algebra as prerequisites.
Author:
Publisher:
Published: 1974
Total Pages: 0
ISBN-13:
DOWNLOAD EBOOKAuthor: Farid Amirouche
Publisher: Springer Science & Business Media
Published: 2007-05-24
Total Pages: 692
ISBN-13: 0817644067
DOWNLOAD EBOOKThis textbook – a result of the author’s many years of research and teaching – brings together diverse concepts of the versatile tool of multibody dynamics, combining the efforts of many researchers in the field of mechanics.