*Finite Element Analysis with Mathematica and Matlab Computations and Practical Applications is an innovative, hands-on and practical introduction to the Finite Element Method that provides a powerful tool for learning this essential analytic method. *Support website (www.wiley.com/go/bhatti) includes complete sets of Mathematica and Matlab implementations for all examples presented in the text. Also included on the site are problems designed for self-directed labs using commercial FEA software packages ANSYS and ABAQUS. *Offers a practical and hands-on approach while providing a solid theoretical foundation.
Highlights of the book: Discussion about all the fields of Computer Aided Engineering, Finite Element Analysis Sharing of worldwide experience by more than 10 working professionals Emphasis on Practical usuage and minimum mathematics Simple language, more than 1000 colour images International quality printing on specially imported paper Why this book has been written ... FEA is gaining popularity day by day & is a sought after dream career for mechanical engineers. Enthusiastic engineers and managers who want to refresh or update the knowledge on FEA are encountered with volume of published books. Often professionals realize that they are not in touch with theoretical concepts as being pre-requisite and find it too mathematical and Hi-Fi. Many a times these books just end up being decoration in their book shelves ... All the authors of this book are from IIT€™s & IISc and after joining the industry realized gap between university education and the practical FEA. Over the years they learned it via interaction with experts from international community, sharing experience with each other and hard route of trial & error method. The basic aim of this book is to share the knowledge & practices used in the industry with experienced and in particular beginners so as to reduce the learning curve & avoid reinvention of the cycle. Emphasis is on simple language, practical usage, minimum mathematics & no pre-requisites. All basic concepts of engineering are included as & where it is required. It is hoped that this book would be helpful to beginners, experienced users, managers, group leaders and as additional reading material for university courses.
The sixth editions of these seminal books deliver the most up to date and comprehensive reference yet on the finite element method for all engineers and mathematicians. Renowned for their scope, range and authority, the new editions have been significantly developed in terms of both contents and scope. Each book is now complete in its own right and provides self-contained reference; used together they provide a formidable resource covering the theory and the application of the universally used FEM. Written by the leading professors in their fields, the three books cover the basis of the method, its application to solid mechanics and to fluid dynamics.* This is THE classic finite element method set, by two the subject's leading authors * FEM is a constantly developing subject, and any professional or student of engineering involved in understanding the computational modelling of physical systems will inevitably use the techniques in these books * Fully up-to-date; ideal for teaching and reference
This textbook offers theoretical and practical knowledge of the finite element method. The book equips readers with the skills required to analyze engineering problems using ANSYS®, a commercially available FEA program. Revised and updated, this new edition presents the most current ANSYS® commands and ANSYS® screen shots, as well as modeling steps for each example problem. This self-contained, introductory text minimizes the need for additional reference material by covering both the fundamental topics in finite element methods and advanced topics concerning modeling and analysis. It focuses on the use of ANSYS® through both the Graphics User Interface (GUI) and the ANSYS® Parametric Design Language (APDL). Extensive examples from a range of engineering disciplines are presented in a straightforward, step-by-step fashion. Key topics include: • An introduction to FEM • Fundamentals and analysis capabilities of ANSYS® • Fundamentals of discretization and approximation functions • Modeling techniques and mesh generation in ANSYS® • Weighted residuals and minimum potential energy • Development of macro files • Linear structural analysis • Heat transfer and moisture diffusion • Nonlinear structural problems • Advanced subjects such as submodeling, substructuring, interaction with external files, and modification of ANSYS®-GUI Electronic supplementary material for using ANSYS® can be found at http://link.springer.com/book/10.1007/978-1-4899-7550-8. This convenient online feature, which includes color figures, screen shots and input files for sample problems, allows for regeneration on the reader’s own computer. Students, researchers, and practitioners alike will find this an essential guide to predicting and simulating the physical behavior of complex engineering systems."
Introduces the basic concepts of FEM in an easy-to-use format so that students and professionals can use the method efficiently and interpret results properly Finite element method (FEM) is a powerful tool for solving engineering problems both in solid structural mechanics and fluid mechanics. This book presents all of the theoretical aspects of FEM that students of engineering will need. It eliminates overlong math equations in favour of basic concepts, and reviews of the mathematics and mechanics of materials in order to illustrate the concepts of FEM. It introduces these concepts by including examples using six different commercial programs online. The all-new, second edition of Introduction to Finite Element Analysis and Design provides many more exercise problems than the first edition. It includes a significant amount of material in modelling issues by using several practical examples from engineering applications. The book features new coverage of buckling of beams and frames and extends heat transfer analyses from 1D (in the previous edition) to 2D. It also covers 3D solid element and its application, as well as 2D. Additionally, readers will find an increase in coverage of finite element analysis of dynamic problems. There is also a companion website with examples that are concurrent with the most recent version of the commercial programs. Offers elaborate explanations of basic finite element procedures Delivers clear explanations of the capabilities and limitations of finite element analysis Includes application examples and tutorials for commercial finite element software, such as MATLAB, ANSYS, ABAQUS and NASTRAN Provides numerous examples and exercise problems Comes with a complete solution manual and results of several engineering design projects Introduction to Finite Element Analysis and Design, 2nd Edition is an excellent text for junior and senior level undergraduate students and beginning graduate students in mechanical, civil, aerospace, biomedical engineering, industrial engineering and engineering mechanics.
Basic Finite Element Method as Applied to Injury Biomechanics provides a unique introduction to finite element methods. Unlike other books on the topic, this comprehensive reference teaches readers to develop a finite element model from the beginning, including all the appropriate theories that are needed throughout the model development process. In addition, the book focuses on how to apply material properties and loading conditions to the model, how to arrange the information in the order of head, neck, upper torso and upper extremity, lower torso and pelvis and lower extremity. The book covers scaling from one body size to the other, parametric modeling and joint positioning, and is an ideal text for teaching, further reading and for its unique application to injury biomechanics. With over 25 years of experience of developing finite element models, the author's experience with tissue level injury threshold instead of external loading conditions provides a guide to the "do's and dont's" of using finite element method to study injury biomechanics. - Covers the fundamentals and applications of the finite element method in injury biomechanics - Teaches readers model development through a hands-on approach that is ideal for students and researchers - Includes different modeling schemes used to model different parts of the body, including related constitutive laws and associated material properties
This new text, intended for the senior undergraduate finite element course in civil or mechanical engineering departments, gives students a solid basis in the mechanical principles of the finite element method and provides a theoretical foundation for applying available software analysis packages and evaluating the results obtained. Dr. Hutton discusses basic theory of the finite element method while avoiding variational calculus, instead focusing upon the engineering mechanics and mathematical background that may be expected of a senior undergraduate engineering student. The text relies upon basic equilibrium principles, introduction of the principle of minimum potential energy, and the Galerkin finite element method, which readily allows application of the FEM to nonstructural problems. The text is software-independent, making it flexible enough for use in a wide variety of programs, and offers a good selection of homework problems and examples.
A comprehensive review of the Finite Element Method (FEM), this book provides the fundamentals together with a wide range of applications in civil, mechanical and aeronautical engineering. It addresses both the theoretical and numerical implementation aspects of the FEM, providing examples in several important topics such as solid mechanics, fluid mechanics and heat transfer, appealing to a wide range of engineering disciplines. Written by a renowned author and academician with the Chinese Academy of Engineering, The Finite Element Method would appeal to researchers looking to understand how the fundamentals of the FEM can be applied in other disciplines. Researchers and graduate students studying hydraulic, mechanical and civil engineering will find it a practical reference text.
The emphasis is on theory, programming and appilications to show exactly how Finite Element Method can be applied to quantum mechanics, heat transfer and fluid dynamics. For engineers, physicists and mathematicians with some mathematical sophistication.
Finite Element Analysis Applications: A Systematic and Practical Approach strikes a solid balance between more traditional FEA textbooks that focus primarily on theory, and the software specific guidebooks that help teach students and professionals how to use particular FEA software packages without providing the theoretical foundation. In this new textbook, Professor Bi condenses the introduction of theories and focuses mainly on essentials that students need to understand FEA models. The book is organized to be application-oriented, covering FEA modeling theory and skills directly associated with activities involved in design processes. Discussion of classic FEA elements (such as truss, beam and frame) is limited. Via the use of several case studies, the book provides easy-to-follow guidance on modeling of different design problems. It uses SolidWorks simulation as the platform so that students do not need to waste time creating geometries for FEA modelling. - Provides a systematic approach to dealing with the complexity of various engineering designs - Includes sections on the design of machine elements to illustrate FEA applications - Contains practical case studies presented as tutorials to facilitate learning of FEA methods - Includes ancillary materials, such as a solutions manual for instructors, PPT lecture slides and downloadable CAD models for examples in SolidWorks