Functional Analysis, Calculus of Variations and Optimal Control

Functional Analysis, Calculus of Variations and Optimal Control

Author: Francis Clarke

Publisher: Springer Science & Business Media

Published: 2013-02-06

Total Pages: 589

ISBN-13: 1447148207

DOWNLOAD EBOOK

Functional analysis owes much of its early impetus to problems that arise in the calculus of variations. In turn, the methods developed there have been applied to optimal control, an area that also requires new tools, such as nonsmooth analysis. This self-contained textbook gives a complete course on all these topics. It is written by a leading specialist who is also a noted expositor. This book provides a thorough introduction to functional analysis and includes many novel elements as well as the standard topics. A short course on nonsmooth analysis and geometry completes the first half of the book whilst the second half concerns the calculus of variations and optimal control. The author provides a comprehensive course on these subjects, from their inception through to the present. A notable feature is the inclusion of recent, unifying developments on regularity, multiplier rules, and the Pontryagin maximum principle, which appear here for the first time in a textbook. Other major themes include existence and Hamilton-Jacobi methods. The many substantial examples, and the more than three hundred exercises, treat such topics as viscosity solutions, nonsmooth Lagrangians, the logarithmic Sobolev inequality, periodic trajectories, and systems theory. They also touch lightly upon several fields of application: mechanics, economics, resources, finance, control engineering. Functional Analysis, Calculus of Variations and Optimal Control is intended to support several different courses at the first-year or second-year graduate level, on functional analysis, on the calculus of variations and optimal control, or on some combination. For this reason, it has been organized with customization in mind. The text also has considerable value as a reference. Besides its advanced results in the calculus of variations and optimal control, its polished presentation of certain other topics (for example convex analysis, measurable selections, metric regularity, and nonsmooth analysis) will be appreciated by researchers in these and related fields.


The Calculus of Variations and Functional Analysis

The Calculus of Variations and Functional Analysis

Author: L. P. Lebedev

Publisher: World Scientific

Published: 2003

Total Pages: 435

ISBN-13: 9812794999

DOWNLOAD EBOOK

This volume is aimed at those who are concerned about Chinese medicine - how it works, what its current state is and, most important, how to make full use of it. The audience therefore includes clinicians who want to serve their patients better and patients who are eager to supplement their own conventional treatment. The authors of the book belong to three different fields, modern medicine, Chinese medicine and pharmacology. They provide information from their areas of expertise and concern, attempting to make it comprehensive for users. The approach is macroscopic and philosophical; readers convinced of the philosophy are to seek specific assistance.


Functional Analysis and Control Theory

Functional Analysis and Control Theory

Author: Stefan Rolewicz

Publisher: Springer Science & Business Media

Published: 1987-10-31

Total Pages: 550

ISBN-13: 9789027721860

DOWNLOAD EBOOK

Approach your problems from the right It isn't that they can't see the solution. end and begin with the answers. Then, It is that they can't see the problem. one day, perhaps you will find the final G.K. Chesterton, The Scandal of Fa question. ther Brown 'The point of a Pin'. 'The Hermit Clad in Crane Feathers' in R. Van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of mono graphs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, cod ing theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical pro gramming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces.


Calculus of Variations and Optimal Control Theory

Calculus of Variations and Optimal Control Theory

Author: Daniel Liberzon

Publisher: Princeton University Press

Published: 2012

Total Pages: 255

ISBN-13: 0691151873

DOWNLOAD EBOOK

This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control


Optimal Control of Differential and Functional Equations

Optimal Control of Differential and Functional Equations

Author: J. Warga

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 546

ISBN-13: 1483259196

DOWNLOAD EBOOK

Optimal Control of Differential and Functional Equations presents a mathematical theory of deterministic optimal control, with emphasis on problems involving functional-integral equations and functional restrictions. The book reviews analytical foundations, and discusses deterministic optimal control problems requiring original, approximate, or relaxed solutions. Original solutions involve mathematicians, and approximate solutions concern engineers. Relaxed solutions yield a complete theory that encompasses both existence theorems and necessary conditions. The text also presents general optimal control problems, optimal control of ordinary differential equations, and different types of functional-integral equations. The book discusses control problems defined by equations in Banach spaces, the convex cost functionals, and the weak necessary conditions for an original minimum. The text illustrates a class of ordinary differential problems with examples, and explains some conflicting control problems with relaxed adverse controls, as well as conflicting control problems with hyper-relaxed adverse controls. The book is intended for mature mathematicians, graduate students in analysis, and practitioners of optimal control whose primary interests and training are in science or engineering.


Optimal Control of ODEs and DAEs

Optimal Control of ODEs and DAEs

Author: Matthias Gerdts

Publisher: Walter de Gruyter

Published: 2011-12-23

Total Pages: 469

ISBN-13: 3110249995

DOWNLOAD EBOOK

The intention of this textbook is to provide both, the theoretical and computational tools that are necessary to investigate and to solve optimal control problems with ordinary differential equations and differential-algebraic equations. An emphasis is placed on the interplay between the continuous optimal control problem, which typically is defined and analyzed in a Banach space setting, and discrete optimal control problems, which are obtained by discretization and lead to finite dimensional optimization problems. The book addresses primarily master and PhD students as well as researchers in applied mathematics, but also engineers or scientists with a good background in mathematics and interest in optimal control. The theoretical parts of the book require some knowledge of functional analysis, the numerically oriented parts require knowledge from linear algebra and numerical analysis. Examples are provided for illustration purposes.


Nonsmooth Analysis and Control Theory

Nonsmooth Analysis and Control Theory

Author: Francis H. Clarke

Publisher: Springer Science & Business Media

Published: 2008-01-10

Total Pages: 288

ISBN-13: 0387226257

DOWNLOAD EBOOK

A clear and succinct presentation of the essentials of this subject, together with some of its applications and a generous helping of interesting exercises. Following an introductory chapter with a taste of what is to come, the next three chapters constitute a course in nonsmooth analysis and identify a coherent and comprehensive approach to the subject, leading to an efficient, natural, and powerful body of theory. The whole is rounded off with a self-contained introduction to the theory of control of ordinary differential equations. The authors have incorporated a number of new results which clarify the relationships between the different schools of thought in the subject, with the aim of making nonsmooth analysis accessible to a wider audience. End-of-chapter problems offer scope for deeper understanding.


Variational Calculus and Optimal Control

Variational Calculus and Optimal Control

Author: John L. Troutman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 471

ISBN-13: 1461207371

DOWNLOAD EBOOK

An introduction to the variational methods used to formulate and solve mathematical and physical problems, allowing the reader an insight into the systematic use of elementary (partial) convexity of differentiable functions in Euclidian space. By helping students directly characterize the solutions for many minimization problems, the text serves as a prelude to the field theory for sufficiency, laying as it does the groundwork for further explorations in mathematics, physics, mechanical and electrical engineering, as well as computer science.


Optimal Control Theory

Optimal Control Theory

Author: L.D. Berkovitz

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 315

ISBN-13: 1475760973

DOWNLOAD EBOOK

This book is an introduction to the mathematical theory of optimal control of processes governed by ordinary differential eq- tions. It is intended for students and professionals in mathematics and in areas of application who want a broad, yet relatively deep, concise and coherent introduction to the subject and to its relati- ship with applications. In order to accommodate a range of mathema- cal interests and backgrounds among readers, the material is arranged so that the more advanced mathematical sections can be omitted wi- out loss of continuity. For readers primarily interested in appli- tions a recommended minimum course consists of Chapter I, the sections of Chapters II, III, and IV so recommended in the introductory sec tions of those chapters, and all of Chapter V. The introductory sec tion of each chapter should further guide the individual reader toward material that is of interest to him. A reader who has had a good course in advanced calculus should be able to understand the defini tions and statements of the theorems and should be able to follow a substantial portion of the mathematical development. The entire book can be read by someone familiar with the basic aspects of Lebesque integration and functional analysis. For the reader who wishes to find out more about applications we recommend references [2], [13], [33], [35], and [50], of the Bibliography at the end of the book.


Applied Functional Analysis

Applied Functional Analysis

Author: Eberhard Zeidler

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 503

ISBN-13: 1461208157

DOWNLOAD EBOOK

The first part of a self-contained, elementary textbook, combining linear functional analysis, nonlinear functional analysis, numerical functional analysis, and their substantial applications with each other. As such, the book addresses undergraduate students and beginning graduate students of mathematics, physics, and engineering who want to learn how functional analysis elegantly solves mathematical problems which relate to our real world. Applications concern ordinary and partial differential equations, the method of finite elements, integral equations, special functions, both the Schroedinger approach and the Feynman approach to quantum physics, and quantum statistics. As a prerequisite, readers should be familiar with some basic facts of calculus. The second part has been published under the title, Applied Functional Analysis: Main Principles and Their Applications.