This book presents the analysis and design of fiber-reinforced polymer (FRP) bridge decks, which have been increasingly implemented in rehabilitation projects and new construction due to their reduced weight, lower maintenance costs, and enhanced durability. It compiles the necessary information, based primarily on research by the authors, to facilitate the development of standards and guidelines for using FRP decks in bridge designs. The book combines analytical models, numerical analyses, and experimental investigations, which can be applied to various design formulations. It also, for the first time, offers a complete set of design guidelines.
"This book presents the analysis and design of fiber-reinforced polymer (FRP) decks, which have been increasingly implemented in rehabilitation projects and new construction due to their reduced weight, lower maintenance costs, and enhanced durability and service life. The book is organized into three complementary parts, covering FRP decks, shear connectors between the deck and steel girders, and the behavior of bridge systems. It outlines analysis and design guidelines for each specific deck type, which can be broadly classified according to their production process as sandwich panels and adhesively bonded cellular sections, produced mainly by pultrusion"--
Issues in Structural and Materials Engineering: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Computer Engineering. The editors have built Issues in Structural and Materials Engineering: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Computer Engineering in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Structural and Materials Engineering: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
"Advances in FRP Composites in Civil Engineering" contains the papers presented at the 5th International Conference on Fiber Reinforced Polymer (FRP) Composites in Civil Engineering in 2010, which is an official conference of the International Institute for FRP in Construction (IIFC). The book includes 7 keynote papers which are presented by top professors and engineers in the world and 203 papers covering a wide spectrum of topics. These important papers not only demonstrate the recent advances in the application of FRP composites in civil engineering, but also point to future research endeavors in this exciting area. Researchers and professionals in the field of civil engineering will find this book is exceedingly valuable. Prof. Lieping Ye and Dr. Peng Feng both work at the Department of Civil Engineering, Tsinghua University, China. Qingrui Yue is a Professor at China Metallurgical Group Corporation.
TRB's National Cooperative Highway Research Program (NCHRP) Synthesis Report 324: Prefabricated Bridge Elements and Systems to Limit Traffic Disruption During Construction assesses and documents the use of innovative prefabricated elements and systems and assesses its effects on on-site construction time and cost, closure time, and environmental impacts. The synthesis report also looks at the use of fiber-reinforced polymers and other advanced materials and new technologies that are gaining in popularity but are still in the experimental stages.
Annotation Over the past three decades, the terminology of composite materials has been well acknowledged by the technical community, and composite materials have been gaining exponential acceptance in a diversity of industries, serving as competitive candidates for traditional structural and functional materials to realize current and future trends imposed on high performance structures. Striking examples of breakthroughs based on utilization of composite materials are increasingly found nowadays in transportation vehicles (aircraft, space shuttle and automobile), civil infrastructure (buildings, bridge and highway barriers), and sporting goods (F1, golf club, sailboat) etc., owing to an improved understanding of their performance characteristics and application potentials, especially innovative, cost-effective manufacturing processes. As the equivalent of ICCM in the Asian-Australasian regions, the Asian-Australasian Association for Composite Materials (AACM) has been playing a vital leading role in the field of composites science and technology since its inception in 1997 in Australia. Following the excellent reputations and traditions of previous ACCMs, ACCM-4 is held in scenic Sydney, Australia, 6-9 July 2004. The theme of ACCM-4, Composites Technologies for 2020, provides a forum to present state-of-the-art achievements and recent advances in composites sciences & technologies, and discuss and identify key and emerging issues for future pursuits. By bringing together leading experts and promising innovators from the research institutions, end-use industries and academia, ACCM-4 intends to facilitate broadband knowledge sharing and identify opportunities for long-term cooperative research and development ventures. The scope of ACCM-4 is broad. It includes, but is not limited to, the following areas: Bi- composites, Ceramic matrix composites, Durability and aging, NDE and SHM Eco-composites, Manufacturing and processing technologies, Industrial applications, Interphases and interfaces, Impact and dynamic response Matrices (polymers, ceramics, and metals), Mechanical and physical properties (fatigue, fracture, micromechanics, viscoelastic behavior, buckling and failure, etc.), Metal matrix composites, Multi-functional composites, Nano-composites, Reinforcements (textiles, strand, and mat), Smart materials and structures, Technology transfer (education, training, etc.)
Protecting the natural environment and promoting sustainability have become important objectives, but achieving such goals presents myriad challenges for even the most committed environmentalist. American Environmentalism: Philosophy, History, and Public Policy examines whether competing interests can be reconciled while developing consistent, coherent, effective public policy to regulate uses and protection of the natural environment without destroying the national economy. It then reviews a range of possible solutions. The book delves into key normative concepts that undergird American perspectives on nature by providing an overview of philosophical concepts found in the western intellectual tradition, the presuppositions inherent in neoclassical economics, and anthropocentric (human-centered) and biocentric (earth-centered) positions on sustainability. It traces the evolution of attitudes about nature from the time of the Ancient Greeks through Europeans in the Middle Ages and the Renaissance, the Enlightenment and the American Founders, the nineteenth and twentieth centuries, and up to the present. Building on this foundation, the author examines the political landscape as non-governmental organizations (NGOs), industry leaders, and government officials struggle to balance industrial development with environmental concerns. Outrageous claims, silly misrepresentations, bogus arguments, absurd contentions, and overblown prophesies of impending calamities are bandied about by many parties on all sides of the debate—industry spokespeople, elected representatives, unelected regulators, concerned citizens, and environmental NGOs alike. In lieu of descending into this morass, the author circumvents the silliness to explore the crucial issues through a more focused, disciplined approach. Rather than engage in acrimonious debate over minutiae, as so often occurs in the context of "green" claims, he recasts the issue in a way that provides a cohesive look at all sides. This effort may be quixotic, but how else to cut the Gordian knot?
This book presents buildings developed using modular assembly approaches based on lightweight and corrosion-resistant fiber reinforced polymer (FRP) composites. Construction methods and the choice of building materials offer great opportunities for more productive and environmentally friendly solutions. This book includes valuable experimental data on large-scale structural components (beams, slabs, amd columns), connections (shear connections, wall stud connections, beam-column connections, column-column connections) and structures (composite floor system, structural sandwich assemblies, and full-scale structural demonstrations), supported with detailed numerical modelling and analytical methods. Largely drawing on the editor’s research over the past ten years with inputs from a number of Ph.D. students, this timely book presents the latest developments in the field. It includes well-designed figures and photographs, analytical formulations supported by data and text, as well as descriptions to i) introduce a series of innovative structural components and connections and their assemblies and ii) illustrate their performance compared to existing solutions and criteria. This book is intended for researchers, graduate students and engineers in fields of the construction and composites industries.
Advanced composite materials for bridge structures are recognized as a promising alternative to conventional construction materials such as steel. After an introductory overview and an assessment of the characteristics of bonds between composites and quasi-brittle structures, Advanced Composites in Bridge Construction and Repair reviews the use of advanced composites in the design and construction of bridges, including damage identification and the use of large rupture strain fiber-reinforced polymer (FRP) composites. The second part of the book presents key applications of FRP composites in bridge construction and repair, including the use of all-composite superstructures for accelerated bridge construction, engineered cementitious composites for bridge decks, carbon fiber-reinforced polymer composites for cable-stayed bridges and for repair of deteriorated bridge substructures, and finally the use of FRP composites in the sustainable replacement of ageing bridge superstructures. Advanced Composites in Bridge Construction and Repair is a technical guide for engineering professionals requiring an understanding of the use of composite materials in bridge construction. - Reviews key applications of fiber-reinforced polymer (FRP) composites in bridge construction and repair - Summarizes key recent research in the suitability of advanced composite materials for bridge structures as an alternative to conventional construction materials
Fiber-reinforced polymer (FRP) composites have become an integral part of the construction industry because of their versatility, enhanced durability and resistance to fatigue and corrosion, high strength-to-weight ratio, accelerated construction, and lower maintenance and life-cycle costs. Advanced FRP composite materials are also emerging for a w