Written in a style that is accessible to a wide audience, The Fractal Geometry of Nature inspired popular interest in this emerging field. Mandelbrot's unique style, and rich illustrations will inspire readers of all backgrounds.
Fractal geometry, based on recursive mathematical schemas, provides a means for modeling a great number of natural phenomena. For this reason, it is of increasing interest to physicists, chemists, biologists, and geographers, among others. A major quality of fractality is that it not only unifies phenomena previously thought to be anomalous or disparate in a single theoretical framework, but it also promotes a return to graphical treatment, which had been almost completely banished from scientific thought in favor of analysis. This book casts a new, lively light on scientific territories still not fully explored. It is designed for research workers, engineers, and experimentalists faced with problems of measure and action in heterogenous materials and environments. Several color plates illustrate the implications and consequences of this theory for most of the questions raised by the taking into consideration of time in a fractal space.
From the reviews: "In the world of mathematics, the 1980's might well be described as the "decade of the fractal". Starting with Benoit Mandelbrot's remarkable text The Fractal Geometry of Nature, there has been a deluge of books, articles and television programmes about the beautiful mathematical objects, drawn by computers using recursive or iterative algorithms, which Mandelbrot christened fractals. Gerald Edgar's book is a significant addition to this deluge. Based on a course given to talented high- school students at Ohio University in 1988, it is, in fact, an advanced undergraduate textbook about the mathematics of fractal geometry, treating such topics as metric spaces, measure theory, dimension theory, and even some algebraic topology. However, the book also contains many good illustrations of fractals (including 16 color plates), together with Logo programs which were used to generate them. ... Here then, at last, is an answer to the question on the lips of so many: 'What exactly is a fractal?' I do not expect many of this book's readers to achieve a mature understanding of this answer to the question, but anyone interested in finding out about the mathematics of fractal geometry could not choose a better place to start looking." #Mathematics Teaching#1
Fractal geometry represents a radical departure from classical geometry, which focuses on smooth objects that "straighten out" under magnification. Fractals, which take their name from the shape of fractured objects, can be characterized as retaining their lack of smoothness under magnification. The properties of fractals come to light under repeated magnification, which we refer to informally as "zooming in". This zooming-in process has its parallels in dynamics, and the varying "scenery" corresponds to the evolution of dynamical variables. The present monograph focuses on applications of one branch of dynamics--ergodic theory--to the geometry of fractals. Much attention is given to the all-important notion of fractal dimension, which is shown to be intimately related to the study of ergodic averages. It has been long known that dynamical systems serve as a rich source of fractal examples. The primary goal in this monograph is to demonstrate how the minute structure of fractals is unfolded when seen in the light of related dynamics. A co-publication of the AMS and CBMS.
A mathematical study of the geometrical aspects of sets of both integral and fractional Hausdorff dimension. Considers questions of local density, the existence of tangents of such sets as well as the dimensional properties of their projections in various directions.
Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Throughout Geometry, Complex Dimensions and Zeta Functions, Second Edition, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.
na broad sense Design Science is the grammar of a language of images Irather than of words. Modern communication techniques enable us to transmit and reconstitute images without needing to know a specific verbal sequence language such as the Morse code or Hungarian. International traffic signs use international image symbols which are not specific to any particular verbal language. An image language differs from a verbal one in that the latter uses a linear string of symbols, whereas the former is multi dimensional. Architectural renderings commonly show projections onto three mutual ly perpendicular planes, or consist of cross sections at different altitudes capa ble of being stacked and representing different floor plans. Such renderings make it difficult to imagine buildings comprising ramps and other features which disguise the separation between floors, and consequently limit the cre ative process of the architect. Analogously, we tend to analyze natural struc tures as if nature had used similar stacked renderings, rather than, for instance, a system of packed spheres, with the result that we fail to perceive the system of organization determining the form of such structures. Perception is a complex process. Our senses record; they are analogous to audio or video devices. We cannot, however, claim that such devices perceive.
A fractal drum is a bounded open subset of R. m with a fractal boundary. A difficult problem is to describe the relationship between the shape (geo metry) of the drum and its sound (its spectrum). In this book, we restrict ourselves to the one-dimensional case of fractal strings, and their higher dimensional analogues, fractal sprays. We develop a theory of complex di mensions of a fractal string, and we study how these complex dimensions relate the geometry with the spectrum of the fractal string. We refer the reader to [Berrl-2, Lapl-4, LapPol-3, LapMal-2, HeLapl-2] and the ref erences therein for further physical and mathematical motivations of this work. (Also see, in particular, Sections 7. 1, 10. 3 and 10. 4, along with Ap pendix B.) In Chapter 1, we introduce the basic object of our research, fractal strings (see [Lapl-3, LapPol-3, LapMal-2, HeLapl-2]). A 'standard fractal string' is a bounded open subset of the real line. Such a set is a disjoint union of open intervals, the lengths of which form a sequence which we assume to be infinite. Important information about the geometry of . c is contained in its geometric zeta function (c(8) = L lj. j=l 2 Introduction We assume throughout that this function has a suitable meromorphic ex tension. The central notion of this book, the complex dimensions of a fractal string . c, is defined as the poles of the meromorphic extension of (c.
Fractal Cities is the pioneering study of the development and use of fractal geometry for understanding and planning the physical form of cities, showing how this geometry enables cities to be simulated throughcomputer graphics. The book explains how the structure of cities evolve in ways which at first sight may appear irregular, but when understood in terms of fractals reveal a complex and diverse underlying order. The book includes numerous illustrations and 16 pages full-color plates of stunning computer graphics, along with explanations of how to construct them. The authors provide an accessible and thought-provoking introduction to fractal geometry, as well as an exciting visual understanding of the formof cities. This approach, bolstered by new insights into the complexity of social systems, provides one of the best introductions to fractal geometry available for non-mathematicians and social scientists. Fractal Cities is useful as a textbook for courses on geographic information systems, urban geography, regional science, and fractal geometry. Planners and architects will find that many aspects of fractal geometry covered in this book are relevant to their own interests. Those involved in fractals and chaos, computer graphics, and systems theory will also find important methods and examples germane to their work. Michael Batty is Director of the National Center for Geographic Information and analysis in the State University of New York at Buffalo, and has worked in planning theory and urban modeling. Paul Longley is a lecturer in geography at the University of Bristol, and is involved in the development of geographic information systems in urban policy analysis. Richly illustrated, including 16 pages of full-color plates of brilliant computer graphics Provides an introduction to fractal geometry for the non-mathematician and social scientist Explains the influence of fractals on the evolution of the physical form of cities
Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular 'chaotic' motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them. The first half of the book introduces some of the key ideas in fractal geometry and dimension theory - Cantor sets, Hausdorff dimension, box dimension - using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures and of the relationship between dimension, entropy, and Lyapunov exponents. In the second half of the book some examples of dynamical systems are considered and various phenomena of chaotic behaviour are discussed, including bifurcations, hyperbolicity, attractors, horseshoes, and intermittent and persistent chaos. These phenomena are naturally revealed in the course of our study of two real models from science - the FitzHugh - Nagumo model and the Lorenz system of differential equations. This book is accessible to undergraduate students and requires only standard knowledge in calculus, linear algebra, and differential equations. Elements of point set topology and measure theory are introduced as needed. This book is a result of the MASS course in analysis at Penn State University in the fall semester of 2008.