Finite Element Analysis of Non-Newtonian Flow

Finite Element Analysis of Non-Newtonian Flow

Author: Hou-Cheng Huang

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 225

ISBN-13: 1447107993

DOWNLOAD EBOOK

A follow on from the author's work "Finite Elements in Heat Transfer" which we published 11/94, and which is a powerful CFD programme that will run on a PC. The fluid flow market is larger than the previous, and this package is good value in comparison with other software packages in Computational Fluid Dynamics, which are generally very expensive. The work in general copes with non-Newtonian laminar flow using the finite element method, and some basic theory of the subject is included in the opening chapters of the book.


Numerical Simulation of Non-Newtonian Flow

Numerical Simulation of Non-Newtonian Flow

Author: M.J. Crochet

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 367

ISBN-13: 0444598553

DOWNLOAD EBOOK

Numerical Simulation of Non-Newtonian Flow focuses on the numerical simulation of non-Newtonian flow using finite difference and finite element techniques. Topics range from the basic equations governing non-Newtonian fluid mechanics to flow classification and finite element calculation of flow (generalized Newtonian flow and viscoelastic flow). An overview of finite difference and finite element methods is also presented. Comprised of 11 chapters, this volume begins with an introduction to non-Newtonian mechanics, paying particular attention to the rheometrical properties of non-Newtonian fluids as well as non-Newtonian flow in complex geometries. The role of non-Newtonian fluid mechanics is also considered. The discussion then turns to the basic equations governing non-Newtonian fluid mechanics, including Navier Stokes equations and rheological equations of state. The next chapter describes a flow classification in which the various flow problems are grouped under five main headings: flows dominated by shear viscosity, slow flows (slightly elastic liquids), small deformation flows, nearly-viscometric flows, and long-range memory effects in complex flows. The remainder of the book is devoted to numerical analysis of non-Newtonian fluids using finite difference and finite element techniques. This monograph will be of interest to students and practitioners of physics and mathematics.


The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition

The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition

Author: J. N. Reddy

Publisher: CRC Press

Published: 2010-04-06

Total Pages: 515

ISBN-13: 1420085980

DOWNLOAD EBOOK

As Computational Fluid Dynamics (CFD) and Computational Heat Transfer (CHT) evolve and become increasingly important in standard engineering design and analysis practice, users require a solid understanding of mechanics and numerical methods to make optimal use of available software. The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition illustrates what a user must know to ensure the optimal application of computational procedures—particularly the Finite Element Method (FEM)—to important problems associated with heat conduction, incompressible viscous flows, and convection heat transfer. This book follows the tradition of the bestselling previous editions, noted for their concise explanation and powerful presentation of useful methodology tailored for use in simulating CFD and CHT. The authors update research developments while retaining the previous editions’ key material and popular style in regard to text organization, equation numbering, references, and symbols. This updated third edition features new or extended coverage of: Coupled problems and parallel processing Mathematical preliminaries and low-speed compressible flows Mode superposition methods and a more detailed account of radiation solution methods Variational multi-scale methods (VMM) and least-squares finite element models (LSFEM) Application of the finite element method to non-isothermal flows Formulation of low-speed, compressible flows With its presentation of realistic, applied examples of FEM in thermal and fluid design analysis, this proven masterwork is an invaluable tool for mastering basic methodology, competently using existing simulation software, and developing simpler special-purpose computer codes. It remains one of the very best resources for understanding numerical methods used in the study of fluid mechanics and heat transfer phenomena.


Implementation of Finite Element Methods for Navier-Stokes Equations

Implementation of Finite Element Methods for Navier-Stokes Equations

Author: F. Thomasset

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 168

ISBN-13: 3642870473

DOWNLOAD EBOOK

In structure mechanics analysis, finite element methods are now well estab lished and well documented techniques; their advantage lies in a higher flexibility, in particular for: (i) The representation of arbitrary complicated boundaries; (ii) Systematic rules for the developments of stable numerical schemes ap proximating mathematically wellposed problems, with various types of boundary conditions. On the other hand, compared to finite difference methods, this flexibility is paid by: an increased programming complexity; additional storage require ment. The application of finite element methods to fluid mechanics has been lagging behind and is relatively recent for several types of reasons: (i) Historical reasons: the early methods were invented by engineers for the analysis of torsion, flexion deformation of bearns, plates, shells, etc ... (see the historics in Strang and Fix (1972) or Zienckiewicz (1977». (ii) Technical reasons: fluid flow problems present specific difficulties: strong gradients,l of the velocity or temperature for instance, may occur which a finite mesh is unable to properly represent; a remedy lies in the various upwind finite element schemes which recently turned up, and which are reviewed in chapter 2 (yet their effect is just as controversial as in finite differences). Next, waves can propagate (e.g. in ocean dynamics with shallowwaters equations) which will be falsely distorted by a finite non regular mesh, as Kreiss (1979) pointed out. We are concerned in this course with the approximation of incompressible, viscous, Newtonian fluids, i.e. governed by N avier Stokes equations.


The Finite Element Method, Fluid Dynamics

The Finite Element Method, Fluid Dynamics

Author: O. C. Zienkiewicz

Publisher: Wiley

Published: 2000-10-05

Total Pages: 0

ISBN-13: 9780470395066

DOWNLOAD EBOOK

Coverage of the whole range of fluid dynamics - including incompressible slow viscous flow, high-speed supersonic flows, shallow water flow, ocean waves, and metal and plastic forming. Up-to-date material on the Characteristic Galerkin Method. New methodologies for dealing with supersonic and hypersonic behaviours. New material on free surface phenomena. "...the publication of the first edition was an epoch making event...it is written by...the greatest theorist of the subject. If you are serious about finite elements, this is a book that you simply cannot afford to be without." International Journal of Numerical Methods in Engineering. "...the pre-eminent reference work on finite element analysis." Applied Mechanical Review. "...a very good book...presentation is first class...will be of great assistance to all engineers and scientists interested in the method...a very commendable piece of work.—"Journal of the British Society for Strain Measurement.


Viscous Flow Applications

Viscous Flow Applications

Author: Carlos A. Brebbia

Publisher: Springer Science & Business Media

Published: 2013-03-12

Total Pages: 195

ISBN-13: 3642836836

DOWNLOAD EBOOK

The Boundary Element Method has now become a powerful tool of engineering analysis and is routinely applied for the solution of elastostatics and potential problems. More recently research has concentrated on solving a large variety of non-linear and time dependent applications and in particular the method has been developed for viscous fluid flow problems. This book presents the state of the art on the solution of viscous flow using boundary elements and discusses different current approaches which have been validated by numerical experiments. . Chapter 1 of the book presents a brief review of previous work on viscous flow simulation and in particular gives an up-to-date list of the most important BEM references in the field. Chapter 2 reviews the governing equations for general viscous flow, including compressibility. The authors present a compre hensive treatment of the different cases and their formulation in terms of boundary integral equations. This work has been the result of collaboration between Computational Mechanics Institute of Southampton and Massa chusetts Institute of Technology researchers. Chapter 3 describes the gen eralized formulation for unsteady viscous flow problems developed over many years at Georgia Institute of Technology. This formulation has been extensively applied to solve aer09ynamic problems.


Numerical Simulation of Non-Newtonian Flow

Numerical Simulation of Non-Newtonian Flow

Author: M.J. Crochet

Publisher: Elsevier Publishing Company

Published: 1984-02

Total Pages: 374

ISBN-13:

DOWNLOAD EBOOK

Numerical Simulation of Non-Newtonian Flow focuses on the numerical simulation of non-Newtonian flow using finite difference and finite element techniques. Topics range from the basic equations governing non-Newtonian fluid mechanics to flow classification and finite element calculation of flow (generalized Newtonian flow and viscoelastic flow). An overview of finite difference and finite element methods is also presented. Comprised of 11 chapters, this volume begins with an introduction to non-Newtonian mechanics, paying particular attention to the rheometrical properties of non-Newtonian fluids as well as non-Newtonian flow in complex geometries. The role of non-Newtonian fluid mechanics is also considered. The discussion then turns to the basic equations governing non-Newtonian fluid mechanics, including Navier Stokes equations and rheological equations of state. The next chapter describes a flow classification in which the various flow problems are grouped under five main headings: flows dominated by shear viscosity, slow flows (slightly elastic liquids), small deformation flows, nearly-viscometric flows, and long-range memory effects in complex flows. The remainder of the book is devoted to numerical analysis of non-Newtonian fluids using finite difference and finite element techniques. This monograph will be of interest to students and practitioners of physics and mathematics.