Development of Adaptive Signal Control (ASC) Based on Automatic Vehicle Location (AVL) System and Its Applications

Development of Adaptive Signal Control (ASC) Based on Automatic Vehicle Location (AVL) System and Its Applications

Author: Guoyuan Wu

Publisher:

Published: 2010

Total Pages: 284

ISBN-13:

DOWNLOAD EBOOK

With the growth of population and increase of travelling requirements in metropolitan areas, public transit has been recognized as a promising remedy and is playing an ever more important role in sustainable transportation systems. However, the development of the public transit system has not received enough attention until the recent emergence of Bus Rapid Transit (BRT). In the conventional public transit system, little to no communication passes between transit vehicles and the roadside infrastructure, such as traffic signals and loop detectors. But now, thanks to advancements in automatic vehicle location (AVL) systems and wireless communication, real-time and high-resolution information of the movement of transit vehicles has become available, which may potentially facilitate the development of more advanced traffic control and management systems. This dissertation introduces a novel adaptive traffic signal control system, which utilizes the real-time location information of transit vehicles. By predicting the movement of the transit vehicle based on continuous detection of the vehicle motion by the on-board AVL system and estimating the measures of effectiveness (MOE) of other motor vehicles based on the surveillance of traffic conditions, optimal signal timings can be obtained by solving the proposed traffic signal optimization models. Both numerical analysis and simulation tests demonstrate that the proposed system improves a transit vehicle's operation as well as minimizes its negative impacts on other motor vehicles in the traffic system. In summary, there are three major contributions of this dissertation: a) development of a novel AVL-based adaptive traffic signal control system; b) modeling of the associated traffic signal timing optimization problem, which is the key component of the proposed system; c) applications of the proposed system to two real world cases. After presenting background knowledge on two major types of transit operations, i.e., preemption and priority, traffic signal control and AVL systems, the architecture of the proposed adaptive signal control system and the associated algorithm are presented. The proposed system includes a data-base, fleet equipped with surveillance system, traffic signal controllers, a transit movement predictor, a traffic signal timing optimizer and a request server. The mixed integer quadratic programming (MIQP) and nonlinear programming (NP) are used to formulate signal timing optimization problems. Then the proposed system and algorithm are applied to two real-world case studies. The first case study concerns the SPRINTER rail transit service. The proposed adaptive signal control (ASC) system is developed to relieve the traffic congestion and to clear the accumulated vehicle queues at the isolated signal around the grade crossing, based on the location information on SPRINTER from PATH-developed cellular GPS trackers. The second case study involves the San Diego trolley system. With the information provided by the AVL system, the proposed ASC system predicts the arrival times of the instrumented trolley at signals and provides the corresponding optimal signal timings to improve the schedule adherence, thus reducing the delays at intersections and enhancing the trip reliability for the trolley travelling along a signalized corridor in the downtown area under the priority operation. The negative impact (e.g., delay increase) on other traffic is minimized simultaneously. Both numerical analysis and simulation tests in the microscopic environment are conducted using the PARAMICS software to validate the proposed system for the aforementioned applications. The results present a promising future for further field operational testing.


Routledge Handbook of Transportation

Routledge Handbook of Transportation

Author: Dusan Teodorovic

Publisher: Routledge

Published: 2015-08-20

Total Pages: 483

ISBN-13: 1317630912

DOWNLOAD EBOOK

The Routledge Handbook of Transportation offers a current and comprehensive survey of transportation planning and engineering research. It provides a step-by-step introduction to research related to traffic engineering and control, transportation planning, and performance measurement and evaluation of transportation alternatives. The Handbook of Transportation demonstrates models and methods for predicting travel and freight demand, planning future transportation networks, and developing traffic control systems. Readers will learn how to use various engineering concepts and approaches to make future transportation safer, more efficient, and more sustainable. Edited by Dušan Teodorović and featuring 29 chapters from more than 50 leading global experts, with more than 200 illustrations, the Routledge Handbook of Transportation is designed as an invaluable resource for professionals and students in transportation planning and engineering.


Handbook of Public Transport Research

Handbook of Public Transport Research

Author: Graham Currie

Publisher: Edward Elgar Publishing

Published: 2021-04-30

Total Pages: 496

ISBN-13: 1788978668

DOWNLOAD EBOOK

Providing a comprehensive overview and analysis of the latest research in the growing field of public transport studies, this Handbook looks at the impact of urbanisation and the growth of mega-cities on public transport. Chapters examine the significant challenges facing the field that require new and original solutions, including congestion and environmental relief, and the social equity objectives that justify public transport in cities.


Freeway Operations and Traffic Signal Systems, 2004

Freeway Operations and Traffic Signal Systems, 2004

Author: National Research Council (U.S.). Transportation Research Board

Publisher:

Published: 2004

Total Pages: 256

ISBN-13:

DOWNLOAD EBOOK

TRB?s Transportation Research Record: Journal of the Transportation Research Board 1867 examines several algorithms that estimate speed from traffic surveillance cameras in a variety of traffic, weather, and lighting conditions; identify bottleneck locations, the active times, and the delays that are caused; and are applied to the archived loop detector data in the I-4 data warehouse.