Experimental Development of Advanced Air Filtration Media Based on Electrospun Polymer Fibers

Experimental Development of Advanced Air Filtration Media Based on Electrospun Polymer Fibers

Author: Negar Ghochaghi

Publisher:

Published: 2014

Total Pages: 288

ISBN-13:

DOWNLOAD EBOOK

Electrospinning is a process by which polymer fibers can be produced using an electrostatically driven fluid jet. Electrospun fibers can be produced at the micro- or nano-scale and are, therefore, very promising for air filtration applications. However, because electrospun fibers are electrically charged, it is difficult to control the morphology of filtration media. Fiber size, alignment and uniformity are very important factors that affect filter performance. The focus of this project is to understand the relationship between filter morphology and performance and to develop new methods to create filtration media with optimum morphology. This study is divided into three focus areas: unimodal and bimodal microscale fibrous media with aligned, orthogonal and random fiber orientations; unimodal and bimodal nanoscale fibers in random orientations; bimodal micrometer and nanometer fiber media with orthogonally aligned orientations. The results indicate that the most efficient filters, which are those with the highest ratio of particle collection efficiency divided by pressure drop, can be obtained through fabricating filters in orthogonal layers of aligned fibers with two different fiber diameters. Moreover, our results show that increasing the number of layers increases the performance of orthogonally layered fibers. Also, controlling fiber spacing in orthogonally layered micrometer fiber media can be an alternative way to study the filtration performance. Finally, such coatings presented throughout this research study can be designed and placed up-stream, down-stream, and/or in between conventional filters.


Applied Chemistry and Chemical Engineering, Volume 3

Applied Chemistry and Chemical Engineering, Volume 3

Author: A. K. Haghi

Publisher: CRC Press

Published: 2017-12-22

Total Pages: 390

ISBN-13: 177188567X

DOWNLOAD EBOOK

Understanding mathematical modeling is fundamental in chemical engineering. This book reviews, introduces, and develops the mathematical models that are most frequently encountered in sophisticated chemical engineering domains. The volume provides a collection of models illustrating the power and richness of the mathematical sciences in supplying insight into the operation of important real-world systems. It fills a gap within modeling texts, focusing on applications across a broad range of disciplines. The first part of the book discusses the general components of the modeling process and highlights the potential of modeling in the production of nanofibers. These chapters discuss the general components of the modeling process and the evolutionary nature of successful model building in the electrospinning process. Electrospinning is the most versatile technique for the preparation of continuous nanofibers obtained from numerous materials. This section of book summarizes the state-of-the art in electrospinning as well as updates on theoretical aspects and applications. Part 2 of the book presents a selection of special topics on issues in applied chemistry and chemical engineering, including nanocomposite coating processes by electrocodeposition method, entropic factors conformational interactions, and the application of artificial neural network and meta-heuristic algorithms. This volume covers a wide range of topics in mathematical modeling, computational science, and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines.


Applied Mathematical Models and Experimental Approaches in Chemical Science

Applied Mathematical Models and Experimental Approaches in Chemical Science

Author: Vladimir Ivanovitch Kodolov

Publisher: CRC Press

Published: 2016-11-03

Total Pages: 411

ISBN-13: 1315341972

DOWNLOAD EBOOK

This new book focuses on nanomaterial development as well as investigations of combustion and explosion processes. It presents valuable information on the modeling of processes and on quantum chemical calculations and leading-edge research from around the world in this dynamic field, focusing on concepts above formal experimental techniques and theoretical methods of chemical physics for micro- and nanotechnologies. Also presented are non-linear kinetic appearances and their possible applications.


Handbook of Research for Fluid and Solid Mechanics

Handbook of Research for Fluid and Solid Mechanics

Author: Kaveh Hariri Asli

Publisher: CRC Press

Published: 2017-11-23

Total Pages: 218

ISBN-13: 1315341506

DOWNLOAD EBOOK

This valuable volume provides a broad understanding of the main computational techniques used for processing reclamation of fluid and solid mechanics. The aim of these computational techniques is to reduce and eliminate the risks of mechanical systems failure in hydraulic machines. Using many computational methods for mechanical engineering problems, the book presents not only a platform for solving problems but also provides a wealth of information to address various technical aspects of troubleshooting of mechanical system failure. The focus of the book is on practical and realistic fluids engineering experiences. Many photographs and figures are included, especially to illustrate new design applications and new instruments.


Applied Nanotechnology

Applied Nanotechnology

Author: Vladimir Ivanovitch Kodolov

Publisher: CRC Press

Published: 2016-12-08

Total Pages: 368

ISBN-13: 1771883510

DOWNLOAD EBOOK

This important book presents a collection of scientific papers on recent theoretical and practical advances in nanostructures, nanomaterials, and nanotechnologies. Highlighting some of the latest developments and trends in the field, the volume presents the developments of advanced nanostructured materials and the respective tools to characterize and predict their properties and behavior.


Pathways to Modern Physical Chemistry

Pathways to Modern Physical Chemistry

Author: Rainer Wolf

Publisher: CRC Press

Published: 2016-10-14

Total Pages: 474

ISBN-13: 1315342235

DOWNLOAD EBOOK

Pathways to Modern Physical Chemistry: An Engineering Approach with Multidisciplinary Applications focuses on recent trends and takes a systematic and practical look at theoretical aspects of materials chemistry. The book describes the characterization and analysis methods for materials and explains physical transport mechanisms in various materials. Not only does this book summarize the classical theories of materials chemistry, but it also exhibits their engineering applications in response to the current key issues. Recent trends in several areas are explored, including polymer science, textile engineering, and chemical engineering science, which have important application to practice.


Filtering Media by Electrospinning

Filtering Media by Electrospinning

Author: Maria Letizia Focarete

Publisher: Springer

Published: 2018-05-21

Total Pages: 230

ISBN-13: 3319781634

DOWNLOAD EBOOK

This book covers the state-of-the-art on electrospun materials for the use of filters for water remediation, ion-exchange membranes and affinity membranes for the capture of selected chemical and biochemical species, as well as filtering applications covering air treatment, defense and protective applications, and oil-water separation. The book also provides an overview of the landscape of marketed electrospun filters and of technical approaches for the large scale production of nanofibrous non-woven filter media. This is an ideal book for biomaterials and polymer researchers interested in the applications of filtering media by electrospinning. This book also: Covers the latest research on ion-exchange membranes and affinity membranes for capture of cells and biological substances Broadens reader understanding of antimicrobial electrospun filters and sieving filters for liquid microfiltration Reviews exhaustively the key recent research into electrospun filters for oil-water separation, heavy metals removal, and defense and protective applications


Electrospun Nanofibers

Electrospun Nanofibers

Author: Santosh Kumar Tiwari

Publisher: Springer Nature

Published: 2021-09-14

Total Pages: 382

ISBN-13: 3030799794

DOWNLOAD EBOOK

The book provides an up-to-date account of the various techniques of fabrication & functionalization of electrospun nanofibers as well as recent advancements. An overview of the advanced applications of such techniques in different areas is also presented. Both experimental and theoretical approaches related to electrospun nanofibers are covered along with a discussion on the inherent properties of electrospun nanofibers. Therefore, this book provides a unique resource not only to established researchers but also newcomers starting out in this field.


Electrospun Nanofibers

Electrospun Nanofibers

Author: Mehdi Afshari

Publisher: Woodhead Publishing

Published: 2016-09-13

Total Pages: 650

ISBN-13: 0081009119

DOWNLOAD EBOOK

Electrospun Nanofibers covers advances in the electrospinning process including characterization, testing and modeling of electrospun nanofibers, and electrospinning for particular fiber types and applications. Electrospun Nanofibers offers systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science. Electrospinning is the most commercially successful process for the production of nanofibers and rising demand is driving research and development in this field. Rapid progress is being made both in terms of the electrospinning process and in the production of nanofibers with superior chemical and physical properties. Electrospinning is becoming more efficient and more specialized in order to produce particular fiber types such as bicomponent and composite fibers, patterned and 3D nanofibers, carbon nanofibers and nanotubes, and nanofibers derived from chitosan. - Provides systematic and comprehensive coverage of the manufacture, properties, and applications of nanofibers - Covers recent developments in nanofibers materials including electrospinning of bicomponent, chitosan, carbon, and conductive fibers - Brings together expertise from academia and industry to provide comprehensive, up-to-date information on nanofiber research and development - Offers systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science


Nanofiber Filter Media for Air Filtration

Nanofiber Filter Media for Air Filtration

Author: Bharath Kumar Raghavan

Publisher:

Published: 2010

Total Pages: 204

ISBN-13:

DOWNLOAD EBOOK

Nanofibers have higher capture efficiencies in comparison to microfibers in the submicron particle size range of 100-500 nm because of small fiber diameter and increased surface area of the fibers. Pressure drop across the filter increases tremendously with decrease in fiber diameter in the continuum flow regime. Nanofibers with fiber diameter less than 300 nm are in the slip flow regime as a consequence of which steep increase in pressure drop is considerably reduced due to slip effect. The outlet or inlet gases have broad range of particle size distribution varying from few micrometers to nanometers. The economic benefits include capture of a wide range of particle sizes in the gas streams using compact filters composed of nanofibers and microfibers. Electrospinning technique was used to successfully fabricate polymeric and ceramic nanofibers. The nanofibers were long, continuous, and flexible with diameters in the range of 200-300 nm. Nanofibers were added to the filter medium either by mixing microfibers and nanofibers or by directly electrospinning nanofibers as thin layer on the surface of the microfiber filter medium. Experimental results showed that either by mixing Nylon 6 nanofibers with B glass fibers or by electrospinning Nylon 6 nanofibers as a thin layer on the surface of the microfiber medium in the surface area ratio of 1 which is 0.06 g of nanofibers for 2 g of microfibers performed better than microfiber filter media in air filtration tests. This improved performance is consistent with numerical modeling The particle loading on a microfibrous filter were studied for air filtration tests . The experimental and modeling results showed that both pressure drop and capture efficiency increased with loading time. Nanofiber filter media has potential applications in many filtration applications and one of them being hot gas filtration. Ceramic nanofibers made of alumina and titania nanofibers can withstand in the range of 1000°C. Ceramic nanofibers filter media were fabricated by mixing alumina microfibers (SAFFIL) and alumina nanofibers. The appropriate binders were tested for ceramic filter media. The ceramic filter media were tested for aerosol filtration.