Estimation with Applications to Tracking and Navigation

Estimation with Applications to Tracking and Navigation

Author: Yaakov Bar-Shalom

Publisher: John Wiley & Sons

Published: 2004-04-05

Total Pages: 583

ISBN-13: 0471465216

DOWNLOAD EBOOK

Expert coverage of the design and implementation of state estimation algorithms for tracking and navigation Estimation with Applications to Tracking and Navigation treats the estimation of various quantities from inherently inaccurate remote observations. It explains state estimator design using a balanced combination of linear systems, probability, and statistics. The authors provide a review of the necessary background mathematical techniques and offer an overview of the basic concepts in estimation. They then provide detailed treatments of all the major issues in estimation with a focus on applying these techniques to real systems. Other features include: * Problems that apply theoretical material to real-world applications * In-depth coverage of the Interacting Multiple Model (IMM) estimator * Companion DynaEst(TM) software for MATLAB(TM) implementation of Kalman filters and IMM estimators * Design guidelines for tracking filters Suitable for graduate engineering students and engineers working in remote sensors and tracking, Estimation with Applications to Tracking and Navigation provides expert coverage of this important area.


Bayesian Estimation and Tracking

Bayesian Estimation and Tracking

Author: Anton J. Haug

Publisher: John Wiley & Sons

Published: 2012-05-29

Total Pages: 400

ISBN-13: 1118287800

DOWNLOAD EBOOK

A practical approach to estimating and tracking dynamic systems in real-worl applications Much of the literature on performing estimation for non-Gaussian systems is short on practical methodology, while Gaussian methods often lack a cohesive derivation. Bayesian Estimation and Tracking addresses the gap in the field on both accounts, providing readers with a comprehensive overview of methods for estimating both linear and nonlinear dynamic systems driven by Gaussian and non-Gaussian noices. Featuring a unified approach to Bayesian estimation and tracking, the book emphasizes the derivation of all tracking algorithms within a Bayesian framework and describes effective numerical methods for evaluating density-weighted integrals, including linear and nonlinear Kalman filters for Gaussian-weighted integrals and particle filters for non-Gaussian cases. The author first emphasizes detailed derivations from first principles of eeach estimation method and goes on to use illustrative and detailed step-by-step instructions for each method that makes coding of the tracking filter simple and easy to understand. Case studies are employed to showcase applications of the discussed topics. In addition, the book supplies block diagrams for each algorithm, allowing readers to develop their own MATLAB® toolbox of estimation methods. Bayesian Estimation and Tracking is an excellent book for courses on estimation and tracking methods at the graduate level. The book also serves as a valuable reference for research scientists, mathematicians, and engineers seeking a deeper understanding of the topics.


The Estimation and Tracking of Frequency

The Estimation and Tracking of Frequency

Author: B. G. Quinn

Publisher: Cambridge University Press

Published: 2001-02-05

Total Pages: 282

ISBN-13: 9780521804462

DOWNLOAD EBOOK

This book presents practical techniques for estimating frequencies of signals. Includes Matlab code. For researchers.


Applied State Estimation and Association

Applied State Estimation and Association

Author: Chaw-Bing Chang

Publisher: MIT Press

Published: 2016-07-08

Total Pages: 473

ISBN-13: 026203400X

DOWNLOAD EBOOK

A rigorous introduction to the theory and applications of state estimation and association, an important area in aerospace, electronics, and defense industries. Applied state estimation and association is an important area for practicing engineers in aerospace, electronics, and defense industries, used in such tasks as signal processing, tracking, and navigation. This book offers a rigorous introduction to both theory and application of state estimation and association. It takes a unified approach to problem formulation and solution development that helps students and junior engineers build a sound theoretical foundation for their work and develop skills and tools for practical applications. Chapters 1 through 6 focus on solving the problem of estimation with a single sensor observing a single object, and cover such topics as parameter estimation, state estimation for linear and nonlinear systems, and multiple model estimation algorithms. Chapters 7 through 10 expand the discussion to consider multiple sensors and multiple objects. The book can be used in a first-year graduate course in control or system engineering or as a reference for professionals. Each chapter ends with problems that will help readers to develop derivation skills that can be applied to new problems and to build computer models that offer a useful set of tools for problem solving. Readers must be familiar with state-variable representation of systems and basic probability theory including random and stochastic processes.


Agile Estimating and Planning

Agile Estimating and Planning

Author: Mike Cohn

Publisher: Pearson Education

Published: 2005-11-01

Total Pages: 526

ISBN-13: 0132703106

DOWNLOAD EBOOK

Agile Estimating and Planning is the definitive, practical guide to estimating and planning agile projects. In this book, Agile Alliance cofounder Mike Cohn discusses the philosophy of agile estimating and planning and shows you exactly how to get the job done, with real-world examples and case studies. Concepts are clearly illustrated and readers are guided, step by step, toward how to answer the following questions: What will we build? How big will it be? When must it be done? How much can I really complete by then? You will first learn what makes a good plan-and then what makes it agile. Using the techniques in Agile Estimating and Planning, you can stay agile from start to finish, saving time, conserving resources, and accomplishing more. Highlights include: Why conventional prescriptive planning fails and why agile planning works How to estimate feature size using story points and ideal days–and when to use each How and when to re-estimate How to prioritize features using both financial and nonfinancial approaches How to split large features into smaller, more manageable ones How to plan iterations and predict your team's initial rate of progress How to schedule projects that have unusually high uncertainty or schedule-related risk How to estimate projects that will be worked on by multiple teams Agile Estimating and Planning supports any agile, semiagile, or iterative process, including Scrum, XP, Feature-Driven Development, Crystal, Adaptive Software Development, DSDM, Unified Process, and many more. It will be an indispensable resource for every development manager, team leader, and team member.


Simultaneous Tracking and Shape Estimation of Extended Objects

Simultaneous Tracking and Shape Estimation of Extended Objects

Author: Marcus Baum

Publisher:

Published: 2020-10-09

Total Pages: 182

ISBN-13: 9781013279874

DOWNLOAD EBOOK

This work is concerned with the simultaneous tracking and shape estimation of a mobile extended object based on noisy sensor measurements. Novel methods are developed for coping with the following two main challenges: i) The computational complexity due to the nonlinearity and high-dimensionality of the problem and ii) the lack of statistical knowledge about possible measurement sources on the extended object. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.


Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking

Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking

Author: Harry L. Van Trees

Publisher: Wiley-IEEE Press

Published: 2007-08-31

Total Pages: 951

ISBN-13: 9780470120958

DOWNLOAD EBOOK

The first comprehensive development of Bayesian Bounds for parameter estimation and nonlinear filtering/tracking Bayesian estimation plays a central role in many signal processing problems encountered in radar, sonar, communications, seismology, and medical diagnosis. There are often highly nonlinear problems for which analytic evaluation of the exact performance is intractable. A widely used technique is to find bounds on the performance of any estimator and compare the performance of various estimators to these bounds. This book provides a comprehensive overview of the state of the art in Bayesian Bounds. It addresses two related problems: the estimation of multiple parameters based on noisy measurements and the estimation of random processes, either continuous or discrete, based on noisy measurements. An extensive introductory chapter provides an overview of Bayesian estimation and the interrelationship and applicability of the various Bayesian Bounds for both static parameters and random processes. It provides the context for the collection of papers that are included. This book will serve as a comprehensive reference for engineers and statisticians interested in both theory and application. It is also suitable as a text for a graduate seminar or as a supplementary reference for an estimation theory course.


Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors

Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors

Author: Rudolf Frühwirth

Publisher: Springer Nature

Published: 2021

Total Pages: 208

ISBN-13: 303065771X

DOWNLOAD EBOOK

This open access book is a comprehensive review of the methods and algorithms that are used in the reconstruction of events recorded by past, running and planned experiments at particle accelerators such as the LHC, SuperKEKB and FAIR. The main topics are pattern recognition for track and vertex finding, solving the equations of motion by analytical or numerical methods, treatment of material effects such as multiple Coulomb scattering and energy loss, and the estimation of track and vertex parameters by statistical algorithms. The material covers both established methods and recent developments in these fields and illustrates them by outlining exemplary solutions developed by selected experiments. The clear presentation enables readers to easily implement the material in a high-level programming language. It also highlights software solutions that are in the public domain whenever possible. It is a valuable resource for PhD students and researchers working on online or offline reconstruction for their experiments.


Tracking and Kalman Filtering Made Easy

Tracking and Kalman Filtering Made Easy

Author: Eli Brookner

Publisher: Wiley-Interscience

Published: 1998

Total Pages: 512

ISBN-13:

DOWNLOAD EBOOK

TRACKING, PREDICTION, AND SMOOTHING BASICS. g and g-h-k Filters. Kalman Filter. Practical Issues for Radar Tracking. LEAST-SQUARES FILTERING, VOLTAGE PROCESSING, ADAPTIVE ARRAY PROCESSING, AND EXTENDED KALMAN FILTER. Least-Squares and Minimum-Variance Estimates for Linear Time-Invariant Systems. Fixed-Memory Polynomial Filter. Expanding- Memory (Growing-Memory) Polynomial Filters. Fading-Memory (Discounted Least-Squares) Filter. General Form for Linear Time-Invariant System. General Recursive Minimum-Variance Growing-Memory Filter (Bayes and Kalman Filters without Target Process Noise). Voltage Least-Squares Algorithms Revisited. Givens Orthonormal Transformation. Householder Orthonormal Transformation. Gram--Schmidt Orthonormal Transformation. More on Voltage-Processing Techniques. Linear Time-Variant System. Nonlinear Observation Scheme and Dynamic Model (Extended Kalman Filter). Bayes Algorithm with Iterative Differential Correction for Nonlinear Systems. Kalman Filter Revisited. Appendix. Problems. Symbols and Acronyms. Solution to Selected Problems. References. Index.


Location Estimation from the Ground Up

Location Estimation from the Ground Up

Author: Sivan Toledo

Publisher: SIAM

Published: 2020-09-17

Total Pages: 217

ISBN-13: 1611976294

DOWNLOAD EBOOK

The location of an object can often be determined from indirect measurements using a process called estimation. This book explains the mathematical formulation of location-estimation problems and the statistical properties of these mathematical models. It also presents algorithms that are used to resolve these models to obtain location estimates, including the simplest linear models, nonlinear models (location estimation using satellite navigation systems and estimation of the signal arrival time from those satellites), dynamical systems (estimation of an entire path taken by a vehicle), and models with integer ambiguities (GPS location estimation that is centimeter-level accurate). Location Estimation from the Ground Up clearly presents analytic and algorithmic topics not covered in other books, including simple algorithms for Kalman filtering and smoothing, the solution of separable nonlinear optimization problems, estimation with integer ambiguities, and the implicit-function approach to estimating covariance matrices when the estimator is a minimizer or maximizer. It takes a unified approach to estimation while highlighting the differences between classes of estimation problems. The only book on estimation written for math and computer science students and graduates, it includes problems at the end of each chapter, many with solutions, to help readers deepen their understanding of the material and guide them through small programming projects that apply theory and algorithms to the solution of real-world location-estimation problems. The book’s core audience consists of engineers, including software engineers and algorithm developers, and graduate students who work on location-estimation projects and who need help translating the theory into algorithms, code, and deep understanding of the problem in front of them. Instructors in mathematics, computer science, and engineering may also find the book of interest as a primary or supplementary text for courses in location estimation and navigation.