In this volume, internationally renowned chemists recount their roles in the progress of chemistry research toward elucidation of biological processes. Beginning with a historical perspective on the development of X-ray crystallography, the reader is regaled with first-hand accounts of research milestones. Included are descriptions of the cutting-edge nuclear-magnetic-resonance and electron-paramagnetic-resonance spectroscopic techniques, the dynamics of ultra-fast reactions, and the central problem of molecular oxygen activation in biological processes. The roles of chiral auxiliaries in organic synthesis and of photochemistry in natural product synthesis are told, and innovations in combinatorial synthesis approaches are described. Contemporary issues in molecular recognition and modulation of molecular function are addressed, concluding with a missive regarding how the frontiers of medical ethics may be breached by molecular manipulations. The contributors, who number among the finest scientists in the world, including two Nobel Prize winners, are Peter B. Dervan, Jack D. Dunitz, Christian Griesinger, Jean-Marie Lehn, Thomas F. Prisner, Gerhard Quinkert, Peter G. Schultz, Helmut Schwarz, Dieter Seebach, and Ahmed Zewail. Additionally, there is a prologue by Albert Eschenmoser, for whom this collection was conceived, and an epilogue that contains facsimiles of notes from his landmark lecture 'Synthesis of Co-Enzyme B12: A Vehicle for Teaching Organic Synthesis'. This book is definitely a must for all who want to read, or to read again, where we stand in our chemical comprehension of the fascinating relationship between chemical structure and biological processes, how we got here, and what the future might hold.
In Cathedrals of Science, Patrick Coffey describes how chemistry got its modern footing-how thirteen brilliant men and one woman struggled with the laws of the universe and with each other. They wanted to discover how the world worked, but they also wanted credit for making those discoveries, and their personalities often affected how that credit was assigned. Gilbert Lewis, for example, could be reclusive and resentful, and his enmity with Walther Nernst may have cost him the Nobel Prize; Irving Langmuir, gregarious and charming, "rediscovered" Lewis's theory of the chemical bond and received much of the credit for it. Langmuir's personality smoothed his path to the Nobel Prize over Lewis. Coffey deals with moral and societal issues as well. These same scientists were the first to be seen by their countries as military assets. Fritz Haber, dubbed the "father of chemical warfare," pioneered the use of poison gas in World War I-vividly described-and Glenn Seaborg and Harold Urey were leaders in World War II's Manhattan Project; Urey and Linus Pauling worked for nuclear disarmament after the war. Science was not always fair, and many were excluded. The Nazis pushed Jewish scientists like Haber from their posts in the 1930s. Anti-Semitism was also a force in American chemistry, and few women were allowed in; Pauling, for example, used his influence to cut off the funding and block the publications of his rival, Dorothy Wrinch. Cathedrals of Science paints a colorful portrait of the building of modern chemistry from the late 19th to the mid-20th century.
Bridging Traditions explores the connections between apparently different zones of comprehension and experience—magic and experiment, alchemy and mechanics, practical mathematics and geometrical mysticism, things earthy and heavenly, and especially science and medicine—by focusing on points of intersection among alchemy, chemistry, and Paracelsian medical philosophy. In exploring the varieties of natural knowledge in the early modern era, the authors pay tribute to the work of Allen Debus, whose own endeavors cleared the way for scholars to examine subjects that were once snubbed as suitable only to the refuse heap of the history of science.
In addition to lecturing in physics, Duhem began to publish articles on philosophical and historical topics related to his scientific interests in the late 19th century, many of which appeared in the Catholic journal Revue des questions scientifiques. The present volume focuses on chemistry, and includes the book, Le mixte et la combinaison chimique (1902), as well as several related articles from Revue des questions scientifiques and other sources, appearing here in English translation for the first time. Translated by Paul Needham (U. of Stockholm). For Duhem scholars, philosophers of science and chemists with an interest in philosophy. Annotation copyrighted by Book News, Inc., Portland, OR.
This important book collects together stateOCoofOCotheOCoart reviews of diverse topics covering almost all the major areas of modern quantum chemistry. The current focus in the discipline of chemistry OCo synthesis, structure, reactivity and dynamics OCo is mainly on control . A variety of essential computational tools at the disposal of chemists have emerged from recent studies in quantum chemistry. The acceptance and application of these tools in the interfacial disciplines of the life and physical sciences continue to grow. The new era of modern quantum chemistry throws up promising potentialities for further research. Reviews of Modern Quantum Chemistry is a joint endeavor, in which renowned scientists from leading universities and research laboratories spanning 22 countries present 59 inOCodepth reviews. Along with a personal introduction written by Professor Walter Kohn, Nobel laureate (Chemistry, 1998), the articles celebrate the scientific contributions of Professor Robert G Parr on the occasion of his 80th birthday. List of Contributors: W Kohn, M Levy, R Pariser, B R Judd, E Lo, B N Plakhutin, A Savin, P Politzer, P Lane, J S Murray, A J Thakkar, S R Gadre, R F Nalewajski, K Jug, M Randic, G Del Re, U Kaldor, E Eliav, A Landau, M Ehara, M Ishida, K Toyota, H Nakatsuji, G Maroulis, A M Mebel, S Mahapatra, R CarbOCoDorca, u Nagy, I A Howard, N H March, SOCoB Liu, R G Pearson, N Watanabe, S TenOCono, S Iwata, Y Udagawa, E Valderrama, X Fradera, I Silanes, J M Ugalde, R J Boyd, E V Ludea, V V Karasiev, L Massa, T Tsuneda, K Hirao, J-M Tao, J P Perdew, O V Gritsenko, M Grning, E J Baerends, F Aparicio, J Garza, A Cedillo, M Galvin, R Vargas, E Engel, A HAck, R N Schmid, R M Dreizler, J Poater, M Sola, M Duran, J Robles, X Fradera, P K Chattaraj, A Poddar, B Maiti, A Cedillo, S Guti(r)rrezOCoOliva, P Jaque, A ToroOCoLabb(r), H Chermette, P Boulet, S Portmann, P Fuentealba, R Contreras, P Geerlings, F De Proft, R Balawender, D P Chong, A Vela, G Merino, F Kootstra, P L de Boeij, R van Leeuwen, J G Snijders, N T Maitra, K Burke, H Appel, E K U Gross, M K Harbola, H F Hameka, C A Daul, I Ciofini, A Bencini, S K Ghosh, A Tachibana, J M CabreraOCoTrujillo, F Tenorio, O Mayorga, M Cases, V Kumar, Y Kawazoe, A M KAster, P Calaminici, Z Gmez, U Reveles, J A Alonso, L M Molina, M J Lpez, F Dugue, A Maanes, C A Fahlstrom, J A Nichols, D A Dixon, P A Derosa, A G Zacarias, J M Seminario, D G Kanhere, A Vichare, S A Blundell, ZOCoY Lu, HOCoY Liu, M Elstner, WOCoT Yang, J Muoz, X Fradera, M Orozco, F J Luque, P Tarakeshwar, H M Lee, K S Kim, M Valiev, E J Bylaska, A Gramada, J H Weare, J Brickmann, M Keil, T E Exner, M Hoffmann & J Rychlewski. Contents: Volume I: Applications of the Automorphisms of SO(8) to the Atomic f Shell (B R Judd & E Lo); Probability Distributions and Valence Shells in Atoms (A Savin); Information Theoretical Approaches to Quantum Chemistry (S R Gadre); Quantum Chemical Justification for Clar''s Valence Structures (M Randic); Functional Expansion Approach in Density Functional Theory (S-B Liu); Normconserving Pseudopotentials for the Exact Exchange Functional (E Engel et al.); Volume II: Chemical Reactivity and Dynamics within a Density-based Quantum Mechanical Framework (P K Chattaraj et al.); Fukui Functions and Local Softness (H Chermette et al.); The Nuclear Fukui Function (P Geerlings et al.); Causality in Time-Dependent Density-Functional Theory (M K Harbola); Theoretical Studies of Molecular Magnetism (H F Hameka); Melting in Finite-Sized Systems (D G Kanhere et al.); Density Functional Theory (DFT) and Drug Design (M Hoffmann & J Rychlewski); and other papers. Readership: Researchers and academics in computational, physical, fullerene, industrial, polymer, solid state and theoretical/quantum chemistry; nanoscience, superconductivity & magnetic materials, surface science; atomic, computational and condensed matter physics; and thermodynamics."
This comprehensive volume marks a new standard in scholarship in the emerging field of the philosophy of chemistry. Philosophers, chemists, and historians of science ask some fundamental questions about the relationship between philosophy and chemistry.
What’s it really like to be a chemist? Leading chemists share what they do, how they do it, and why they love it. “Letters to a young ...” has been a much-loved way for professionals in a field to convey their enthusiasm and the realities of what they do to the next generation. Now, Letters to a Young Chemist does the same for the chemical sciences. Written with a humorous touch by some of today’s leading chemists, this book presents missives to “Angela,” a fictional undergraduate considering a career in chemistry. The different chapters offer a mix of fundamental principles, contemporary issues, and challenges for the future. Marye Anne Fox, Chancellor of the University of California San Diego, talks about learning to do research and modern physical organic chemistry. Brothers Jonathan and Daniel Sessler explain the chemistry of anesthetics that make modern surgery possible while Elizabeth Nolan talks about biological imaging. Terry Collins talks about green chemistry, a more sustainable way of doing chemistry, while several authors including Carl Wamser, Harry Gray, John Magyar, and Penny Brothers discuss the crucial contributions that chemists can make in meeting global energy needs. Letters to a Young Chemist gives students and professionals alike a unique window into the real world of chemistry. Entertaining, informative, and full of honest and inspiring advice, it serves as a helpful guide throughout your education and career. “The different chapters describe both the wonders of the molecular world and the practical benefits afforded by chemistry ... and if any girl out there thinks that chemistry is a man’s world, this book should be a good antidote.” —Marye Anne Fox, Chancellor of the University of California, San Diego, and winner of the 2009 US National Medal of Science “Letters to a Young Chemist offers significant ammunition for motivating young people to consider chemistry as a career. ... This book should also be required reading for all faculty members who teach chemistry in high schools, colleges, and universities.” —Stephen J. Lippard, Arthur Amos Noyes Professor of Chemistry, Massachusetts Institute of Technology, and winner of the 2006 US National Medal of Science