Error and the Growth of Experimental Knowledge

Error and the Growth of Experimental Knowledge

Author: Deborah G. Mayo

Publisher: University of Chicago Press

Published: 1996-07-15

Total Pages: 520

ISBN-13: 9780226511979

DOWNLOAD EBOOK

Preface1: Learning from Error 2: Ducks, Rabbits, and Normal Science: Recasting the Kuhn's-Eye View of Popper 3: The New Experimentalism and the Bayesian Way 4: Duhem, Kuhn, and Bayes 5: Models of Experimental Inquiry 6: Severe Tests and Methodological Underdetermination7: The Experimental Basis from Which to Test Hypotheses: Brownian Motion8: Severe Tests and Novel Evidence 9: Hunting and Snooping: Understanding the Neyman-Pearson Predesignationist Stance10: Why You Cannot Be Just a Little Bit Bayesian 11: Why Pearson Rejected the Neyman-Pearson (Behavioristic) Philosophy and a Note on Objectivity in Statistics12: Error Statistics and Peircean Error Correction 13: Toward an Error-Statistical Philosophy of Science ReferencesIndex Copyright © Libri GmbH. All rights reserved.


Error and the Growth of Experimental Knowledge

Error and the Growth of Experimental Knowledge

Author: Deborah G. Mayo

Publisher: University of Chicago Press

Published: 1996-07-15

Total Pages: 512

ISBN-13: 9780226511979

DOWNLOAD EBOOK

We may learn from our mistakes, but Deborah Mayo argues that, where experimental knowledge is concerned, we haven't begun to learn enough. Error and the Growth of Experimental Knowledge launches a vigorous critique of the subjective Bayesian view of statistical inference, and proposes Mayo's own error-statistical approach as a more robust framework for the epistemology of experiment. Mayo genuinely addresses the needs of researchers who work with statistical analysis, and simultaneously engages the basic philosophical problems of objectivity and rationality. Mayo has long argued for an account of learning from error that goes far beyond detecting logical inconsistencies. In this book, she presents her complete program for how we learn about the world by being "shrewd inquisitors of error, white gloves off." Her tough, practical approach will be important to philosophers, historians, and sociologists of science, and will be welcomed by researchers in the physical, biological, and social sciences whose work depends upon statistical analysis.


Error and Inference

Error and Inference

Author: Deborah G. Mayo

Publisher: Cambridge University Press

Published: 2009-10-26

Total Pages: 491

ISBN-13: 1139485369

DOWNLOAD EBOOK

Although both philosophers and scientists are interested in how to obtain reliable knowledge in the face of error, there is a gap between their perspectives that has been an obstacle to progress. By means of a series of exchanges between the editors and leaders from the philosophy of science, statistics and economics, this volume offers a cumulative introduction connecting problems of traditional philosophy of science to problems of inference in statistical and empirical modelling practice. Philosophers of science and scientific practitioners are challenged to reevaluate the assumptions of their own theories - philosophical or methodological. Practitioners may better appreciate the foundational issues around which their questions revolve and thereby become better 'applied philosophers'. Conversely, new avenues emerge for finally solving recalcitrant philosophical problems of induction, explanation and theory testing.


Statistical Inference as Severe Testing

Statistical Inference as Severe Testing

Author: Deborah G. Mayo

Publisher: Cambridge University Press

Published: 2018-09-20

Total Pages: 503

ISBN-13: 1108563309

DOWNLOAD EBOOK

Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.


Reproducibility and Replicability in Science

Reproducibility and Replicability in Science

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2019-10-20

Total Pages: 257

ISBN-13: 0309486165

DOWNLOAD EBOOK

One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science.


Conjectures and Refutations

Conjectures and Refutations

Author: Karl Raimund Popper

Publisher: Psychology Press

Published: 2002

Total Pages: 614

ISBN-13: 9780415285940

DOWNLOAD EBOOK

Conjectures and Refutations is one of Karl Popper's most wide-ranging and popular works, notable not only for its acute insight into the way scientific knowledge grows, but also for applying those insights to politics and to history. It provides one of the clearest and most accessible statements of the fundamental idea that guided his work: not only our knowledge, but our aims and our standards, grow through an unending process of trial and error.


Statistical Procedures for Agricultural Research

Statistical Procedures for Agricultural Research

Author: Kwanchai A. Gomez

Publisher: John Wiley & Sons

Published: 1984-02-17

Total Pages: 698

ISBN-13: 9780471870920

DOWNLOAD EBOOK

Here in one easy-to-understand volume are the statistical procedures and techniques the agricultural researcher needs to know in order to design, implement, analyze, and interpret the results of most experiments with crops. Designed specifically for the non-statistician, this valuable guide focuses on the practical problems of the field researcher. Throughout, it emphasizes the use of statistics as a tool of research—one that will help pinpoint research problems and select remedial measures. Whenever possible, mathematical formulations and statistical jargon are avoided. Originally published by the International Rice Research Institute, this widely respected guide has been totally updated and much expanded in this Second Edition. It now features new chapters on the analysis of multi-observation data and experiments conducted over time and space. Also included is a chapter on experiments in farmers' fields, a subject of major concern in developing countries where agricultural research is commonly conducted outside experiment stations. Statistical Procedures for Agricultural Research, Second Edition will prove equally useful to students and professional researchers in all agricultural and biological disciplines. A wealth of examples of actual experiments help readers to choose the statistical method best suited for their needs, and enable even the most complicated procedures to be easily understood and directly applied. An International Rice Research Institute Book


Experimental Economics

Experimental Economics

Author: Nicolas Jacquemet

Publisher: Cambridge University Press

Published: 2018-11-29

Total Pages: 475

ISBN-13: 1108660495

DOWNLOAD EBOOK

Over the past two decades, experimental economics has moved from a fringe activity to become a standard tool for empirical research. With experimental economics now regarded as part of the basic tool-kit for applied economics, this book demonstrates how controlled experiments can be a useful in providing evidence relevant to economic research. Professors Jacquemet and L'Haridon take the standard model in applied econometrics as a basis to the methodology of controlled experiments. Methodological discussions are illustrated with standard experimental results. This book provides future experimental practitioners with the means to construct experiments that fit their research question, and new comers with an understanding of the strengths and weaknesses of controlled experiments. Graduate students and academic researchers working in the field of experimental economics will be able to learn how to undertake, understand and criticise empirical research based on lab experiments, and refer to specific experiments, results or designs completed with case study applications.


Bayesian Data Analysis, Third Edition

Bayesian Data Analysis, Third Edition

Author: Andrew Gelman

Publisher: CRC Press

Published: 2013-11-01

Total Pages: 677

ISBN-13: 1439840954

DOWNLOAD EBOOK

Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.