Enhanced LAW Glass Correlation - Phase 1

Enhanced LAW Glass Correlation - Phase 1

Author:

Publisher:

Published: 2016

Total Pages: 199

ISBN-13:

DOWNLOAD EBOOK

About 50 million gallons of high-level mixed waste is currently stored in underground tanks at the United States Department of Energy's (DOE's) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE's Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity waste fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed in an engineered facility on the Hanford site while the IHLW product is designed for acceptance into a national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal. Acceptable glass formulations for vitrification of Hanford low activity waste (LAW) must meet a variety of product quality, processability, and waste loading requirements. To this end, The Vitreous State Laboratory (VSL) at The Catholic University of America (CUA) developed and tested a number of glass formulations during Part A, Part B1 and Part B2 of the WTP development program. The testing resulted in the selection of target glass compositions for the processing of eight of the Phase I LAW tanks. The selected glass compositions were tested at the crucible scale to confirm their compliance with ILAW performance requirements. Duramelter 100 (DM100) and LAW Pilot Melter tests were then conducted to demonstrate the viability of these glass compositions for LAW vitrification at high processing rates.


Letter Report. Proposed Approach for Development of LAW Glass Formulation Correlation, VSL-04L4460-1, Rev. 2

Letter Report. Proposed Approach for Development of LAW Glass Formulation Correlation, VSL-04L4460-1, Rev. 2

Author:

Publisher:

Published: 2015

Total Pages: 68

ISBN-13:

DOWNLOAD EBOOK

The main objective of the work is to develop a correlation that employs waste composition information to determine the appropriate waste loading, glass composition, and amounts and types of glass formers. In addressing this objective emphasis has been placed on those compositions that have been validated in DM100 and LAW Pilot Melter testing. This is particularly important in view of the essential role that potential for sulfate phase separation in the melter plays in glass formulation selection. A further objective of this work is to select and test glass compositions in order to augment the existing data set and to test the predictions from the correlation. It should be noted that the intent of the correlation is to provide practical, robust glass formulations that exceed all of the contract and processability requirements; it is not intended to provide the "maximum achievable" waste loading such that at least one of those properties is at its respective limit.


Random Fields and Spin Glasses

Random Fields and Spin Glasses

Author: Cirano De Dominicis

Publisher: Cambridge University Press

Published: 2006-10-26

Total Pages: 240

ISBN-13: 9780521847834

DOWNLOAD EBOOK

The book introduces some useful and little known techniques in statistical mechanics and field theory including multiple Legendre transforms, supersymmetry, Fourier transforms on a tree, infinitesimal permutations and Ward Takahashi Identities."--Jacket.


Spin Glasses

Spin Glasses

Author: Marco Baity Jesi

Publisher: Springer

Published: 2016-06-28

Total Pages: 239

ISBN-13: 3319412310

DOWNLOAD EBOOK

This thesis addresses the surprising features of zero-temperature statics and dynamics of several spin glass models, including correlations between soft spins that arise spontaneously during avalanches, and the discovery of localized states that involve the presence of two-level systems. It also presents the only detailed historiographical research on the spin glass theory. Despite the extreme simplicity of their definition, spin glasses display a wide variety of non-trivial behaviors that are not yet fully understood. In this thesis the author sheds light on some of these, focusing on both the search for phase transitions under perturbations of Hamiltonians and the zero-temperature properties and responses to external stimuli. After introducing spin glasses and useful concepts on phase transitions and numerics, the results of two massive Monte Carlo campaigns on three-dimensional systems are presented: The first of these examines the de Almeida–Thouless transition, and proposes a new finite-size scaling ansatz, which accelerates the convergence to the thermodynamic limit. The second reconstructs the phase diagram of the Heisenberg spin glass with random exchange anisotropy.


Structural Glasses and Supercooled Liquids

Structural Glasses and Supercooled Liquids

Author: Peter G. Wolynes

Publisher: John Wiley & Sons

Published: 2012-03-12

Total Pages: 422

ISBN-13: 1118202414

DOWNLOAD EBOOK

With contributions from 24 global experts in diverse fields, and edited by world-recognized leaders in physical chemistry, chemical physics and biophysics, Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications presents a modern, complete survey of glassy phenomena in many systems based on firmly established characteristics of the underlying molecular motions as deduced by first principle theoretical calculations, or with direct/single-molecule experimental techniques. A well-rounded view of a variety of disordered systems where cooperative phenomena, which are epitomized by supercooled liquids, take place is provided. These systems include structural glasses and supercooled liquids, polymers, complex liquids, protein conformational dynamics, and strongly interacting electron systems with quenched/self-generated disorder. Detailed calculations and reasoned arguments closely corresponding with experimental data are included, making the book accessible to an educated non-expert reader.


Spin Glasses And Random Fields

Spin Glasses And Random Fields

Author: Peter A Young

Publisher: World Scientific

Published: 1997-12-23

Total Pages: 454

ISBN-13: 9814497266

DOWNLOAD EBOOK

The last few years have seen many developments in the study of “frustrated” systems, such as spin glasses and random fields. In addition, the application of the idea of spin glasses to other branches of physics, such as vortex lines in high temperature superconductors, protein folding, structural glasses, and the vulcanization of rubber, has been flourishing. The earlier reviews are several years old, so now is an appropriate time to summarize the recent developments. The articles in this book have been written by leading researchers and include theoretical and experimental studies, and large-scale numerical work (using state-of-the-art algorithms designed specifically for spin-glass-type problems), as well as analytical studies.


Spin Glasses and Random Fields

Spin Glasses and Random Fields

Author: A. Peter Young

Publisher: World Scientific

Published: 1998

Total Pages: 454

ISBN-13: 9810232403

DOWNLOAD EBOOK

The last few years have seen many developments in the study of ?frustrated? systems, such as spin glasses and random fields. In addition, the application of the idea of spin glasses to other branches of physics, such as vortex lines in high temperature superconductors, protein folding, structural glasses, and the vulcanization of rubber, has been flourishing. The earlier reviews are several years old, so now is an appropriate time to summarize the recent developments. The articles in this book have been written by leading researchers and include theoretical and experimental studies, and large-scale numerical work (using state-of-the-art algorithms designed specifically for spin-glass-type problems), as well as analytical studies.


Ordering in Strongly Fluctuating Condensed Matter Systems

Ordering in Strongly Fluctuating Condensed Matter Systems

Author: Tormod Riste

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 474

ISBN-13: 1468436260

DOWNLOAD EBOOK

This NATO Advanced Study Institute held at Gei10, Norway, April 16th-27th 1979, was the fifth in a series devoted to the subject of phase transitions and instabilities. The application to NATO for the funding of this ASI contained the following para graphs: "Traditionally one has made a clear distinction between solids and liquids in terms of positional order, one being long-ranged and the other at most short-ranged. In recent years experiments have revealed a much more faceted picture and a less sharp distinction between solids and liquids. As an example one now has 3-dimensiona1 (3-D) liquids with 1-D density waves and 3-D solids with 1-D-1iquid molecular chains. The subsystems have the common feature of 10w dimensional systems: a strong tendency for fluctuations to appear. Although the connection between fluctuations and dimensionality, and the suppression of long-range order by fluctuations, was pointed out as early as 1935 by Peier1s and by Landau, it is in the last five years or so that theoretical work has gained momentum. This development of understanding started ten years ago, however, much inspired by the experimental work on 2-D spin systems.


Cognitive Phase Transitions in the Cerebral Cortex - Enhancing the Neuron Doctrine by Modeling Neural Fields

Cognitive Phase Transitions in the Cerebral Cortex - Enhancing the Neuron Doctrine by Modeling Neural Fields

Author: Robert Kozma

Publisher: Springer

Published: 2015-10-30

Total Pages: 267

ISBN-13: 331924406X

DOWNLOAD EBOOK

This intriguing book was born out of the many discussions the authors had in the past 10 years about the role of scale-free structure and dynamics in producing intelligent behavior in brains. The microscopic dynamics of neural networks is well described by the prevailing paradigm based in a narrow interpretation of the neuron doctrine. This book broadens the doctrine by incorporating the dynamics of neural fields, as first revealed by modeling with differential equations (K-sets). The book broadens that approach by application of random graph theory (neuropercolation). The book concludes with diverse commentaries that exemplify the wide range of mathematical/conceptual approaches to neural fields. This book is intended for researchers, postdocs, and graduate students, who see the limitations of network theory and seek a beachhead from which to embark on mesoscopic and macroscopic neurodynamics.