Thirteen papers presented at the conference on [title], held in Phoenix, Arizona, December, 1994, discuss the products of the strategic highway research program, the Superpave method of mix design, and test methods for fatigue cracking and permanent deformation. Lacks an index. Annotation c. by Book
This volume highlights the latest advances, innovations, and applications in bituminous materials and structures and asphalt pavement technology, as presented by leading international researchers and engineers at the RILEM International Symposium on Bituminous Materials (ISBM), held in Lyon, France on December 14-16, 2020. The symposium represents a joint effort of three RILEM Technical Committees from Cluster F: 264-RAP “Asphalt Pavement Recycling”, 272-PIM “Phase and Interphase Behaviour of Bituminous Materials”, and 278-CHA “Crack-Healing of Asphalt Pavement Materials”. It covers a diverse range of topics concerning bituminous materials (bitumen, mastics, mixtures) and road, railway and airport pavement structures, including: recycling, phase and interphase behaviour, cracking and healing, modification and innovative materials, durability and environmental aspects, testing and modelling, multi-scale properties, surface characteristics, structure performance, modelling and design, non-destructive testing, back-analysis, and Life Cycle Assessment. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster new multidisciplinary collaborations.
This synthesis report will be of interest to state, local, and federal agency pavement materials, design, and construction engineers, as well as pavement research engineers and scientists. Those with supervisory oversight for pavement programs will also find it of interest. It describes the current practice for methods to achieve rut-resistant durable pavements. The synthesis documents current experience with permanent deformation of asphalt pavements and identifies methods to improve performance. Information for the synthesis was collected by surveying U.S. and Canadian transportation agencies and by conducting a literature search using domestic and international sources. This report of the Transportation Research Board describes the extent of the rutting problem on the National Highway System, pavement mixture design issues, and the design of rut-resistant mixtures. In addition, alternate mixture types, including stone matrix asphalt and porous asphalt, are discussed, as well as international approaches to mixture design. Finally, the construction of rut-resistant mixtures, including the role of quality control and quality assurance methods, are discussed. A summary of permanent deformation causes and solutions is included in the appendix.
This open access book is a compilation of selected papers from the 9th International Conference on Civil Engineering (ICCE2022). The work focuses on novel research findings on seismic technology of civil engineering structures, High-tech construction materials, digitalization of civil engineering, urban underground space development. The contents make valuable contributions to academic researchers and engineers.
This book gathers the proceedings of an international conference held at Empa (Swiss Federal Laboratories for materials Science and Technology) in Dübendorf, Switzerland, in July 2020. The conference series was established by the International Society of Maintenance and Rehabilitation of Transport Infrastructure (iSMARTi) for promoting and discussing state-of-the-art design, maintenance, rehabilitation and management of pavements. The inaugural conference was held at Mackenzie Presbyterian University in Sao Paulo, Brazil, in 2000. The series has steadily grown over the past 20 years, with installments hosted in various countries all over the world. The respective contributions share the latest insights from research and practice in the maintenance and rehabilitation of pavements, and discuss advanced materials, technologies and solutions for achieving an even more sustainable and environmentally friendly infrastructure.
This textbook lays out the state of the art for modeling of asphalt concrete as the major structural component of flexible pavements. The text adopts a pedagogy in which a scientific approach, based on materials science and continuum mechanics, predicts the performance of any configuration of flexible roadways subjected to cyclic loadings. The authors incorporate state-of the-art computational mechanics to predict the evolution of material properties, stresses and strains, and roadway deterioration. Designed specifically for both students and practitioners, the book presents fundamentally complex concepts in a clear and concise way that aids the roadway design community to assimilate the tools for designing sustainable roadways using both traditional and innovative technologies.