New research on the magnetic, dielectric and microwave properties of promising materials for domestic, industrial, military and medical applications are presented, with focus on biomaterials, ferrites, Ni-Fe alloys, capacitors, multiferroics, microwave absorbers and perovskite materials. Special emphasis is placed on bioceramics for orthopedic applications; classification of biomaterials; bioactive glass systems; preparation, properties and applications of PbFe12O19 hexaferrites; Ni-Fe alloys for shielding electronic devices from external magnetostatic fields; the role of multiferroics in spintronics field; design of microwave absorbers and absorption characteristics of ceramics.
New research on the magnetic, dielectric and microwave properties of promising materials for domestic, industrial, military and medical applications are presented, with focus on biomaterials, ferrites, Ni-Fe alloys, capacitors, multiferroics, microwave absorbers and perovskite materials. Special emphasis is placed on bioceramics for orthopedic applications; classification of biomaterials; bioactive glass systems; preparation, properties and applications of PbFe12O19 hexaferrites; Ni-Fe alloys for shielding electronic devices from external magnetostatic fields; the role of multiferroics in spintronics field; design of microwave absorbers and absorption characteristics of ceramics.
Dielectrics in Electric Fields explores the influence of electric fields on dielectric—i.e., non-conducting or insulating—materials, examining the distinctive behaviors of these materials through well-established principles of physics and engineering. Featuring five new chapters, nearly 200 new figures, and more than 800 new citations, this fully updated and significantly expanded Second Edition: Analyzes inorganic substances with real-life applications in harsh working conditions such as outdoor, nuclear, and space environments Introduces methods for measuring dielectric properties at microwave frequencies, presenting results obtained for specific materials Discusses the application of dielectric theory in allied fields such as corrosion studies, civil engineering, and health sciences Combines in one chapter coverage of electrical breakdown in gases with breakdown in micrometric gaps Offers extensive coverage of electron energy distribution—essential knowledge required for the application of plasma sciences in medical science Delivers a detailed review of breakdown in liquids, along with an overview of electron mobility, providing a clear understanding of breakdown phenomena Explains breakdown in solid dielectrics such as single crystals, polycrystalline and amorphous states, thin films, and powders compressed to form pellets Addresses the latest advances in dielectric theory and research, including cutting-edge nanodielectric materials and their practical applications Blends early classical papers that laid the foundation for much of the dielectric theory with more recent work The author has drawn from more than 55 years of research studies and experience in the areas of high-voltage engineering, power systems, and dielectric materials and systems to supply both aspiring and practicing engineers with a comprehensive, authoritative source for up-to-date information on dielectrics in electric fields.
The papers in this volume give the reader focused information on the important extractive metallurgy unit operations of drying, roasting, and calcining
Presents a comprehensive and interdisciplinary review of the major cutting-edge technology research areas—especially those on new materials and methods as well as advanced structures and properties—for various sensor and detection devices The development of sensors and detectors at macroscopic or nanometric scale is the driving force stimulating research in sensing materials and technology for accurate detection in solid, liquid, or gas phases; contact or non-contact configurations; or multiple sensing. The emphasis on reduced-scale detection techniques requires the use of new materials and methods. These techniques offer appealing perspectives given by spin crossover organic, inorganic, and composite materials that could be unique for sensor fabrication. The influence of the length, composition, and conformation structure of materials on their properties, and the possibility of adjusting sensing properties by doping or adding the side-groups, are indicative of the starting point of multifarious sensing. The role of intermolecular interactions, polymer and ordered phase formation, as well as behavior under pressure and magnetic and electric fields are also important facts for processing ultra-sensing materials. The 15 chapters written by senior researchers in Advanced Sensor and Detection Materials cover all these subjects and key features under three foci: 1) principals and perspectives, 2) new materials and methods, and 3) advanced structures and properties for various sensor devices.
Issues in Materials and Manufacturing Research: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Materials and Manufacturing Research. The editors have built Issues in Materials and Manufacturing Research: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Materials and Manufacturing Research in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Materials and Manufacturing Research: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Metals—Advances in Research and Application: 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Metals. The editors have built Metals—Advances in Research and Application: 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Metals in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Metals—Advances in Research and Application: 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
With the phenomenal development of electromagnetic wave communication devices and stealth technology, electromagnetic wave absorbing materials have been attracting attention as antielectromagnetic interference slabs, stealth materials, self-concealing technology, and microwave darkrooms. This book starts with the fundamental theory of electromagnetic wave absorption in loss medium space, followed by a discussion of different microwave absorbents, such as manganese dioxide, iron-based composite powder, conductive polyaniline, barium titanate powder, and manganese nitride. Then, structural absorbing materials are explored, including multilayer materials, new discrete absorbers, microwave absorption coatings, cement-based materials, and structural pyramid materials. Many of the graphics demonstrate not only the principles of physics and experimental results but also the methodology of computing. The book will be useful for graduate students of materials science and engineering, physics, chemistry, and electrical and electronic engineering; researchers in the fields of electromagnetic functional materials and nanoscience; and engineers in the fields of electromagnetic compatibility and stealth design.