EACM is a comprehensive reference work covering the vast field of applied and computational mathematics. Applied mathematics itself accounts for at least 60 per cent of mathematics, and the emphasis on computation reflects the current and constantly growing importance of computational methods in all areas of applications. EACM emphasizes the strong links of applied mathematics with major areas of science, such as physics, chemistry, biology, and computer science, as well as specific fields like atmospheric ocean science. In addition, the mathematical input to modern engineering and technology form another core component of EACM.
This major revision of Berstel and Perrin's classic Theory of Codes has been rewritten with a more modern focus and a much broader coverage of the subject. The concept of unambiguous automata, which is intimately linked with that of codes, now plays a significant role throughout the book, reflecting developments of the last 20 years. This is complemented by a discussion of the connection between codes and automata, and new material from the field of symbolic dynamics. The authors have also explored links with more practical applications, including data compression and cryptography. The treatment remains self-contained: there is background material on discrete mathematics, algebra and theoretical computer science. The wealth of exercises and examples make it ideal for self-study or courses. In summary, this is a comprehensive reference on the theory of variable-length codes and their relation to automata.
This fantastic and deep book about how to use Sage for learning and doing mathematics at all levels perfectly complements the existing Sage documentation. It is filled with many carefully thought through examples and exercises, and great care has been taken to put computational functionality into proper mathematical context. Flip to almost any random page in this amazing book, and you will learn how to play with and visualize some beautiful part of mathematics. --- William A. Stein, CEO, SageMath, and professor of mathematics, University of Washington SageMath, or Sage for short, is an open-source mathematical software system based on the Python language and developed by an international community comprising hundreds of teachers and researchers, whose aim is to provide an alternative to the commercial products Magma, Maple, Mathematica, and MATLAB. To achieve this, Sage relies on many open-source programs, including GAP, Maxima, PARI, and various scientific libraries for Python, to which thousands of new functions have been added. Sage is freely available and is supported by all modern operating systems. Sage provides a wonderful scientific and graphical calculator for high school students, and it efficiently supports undergraduates in their computations in analysis, linear algebra, calculus, etc. For graduate students, researchers, and engineers in various mathematical specialties, Sage provides the most recent algorithms and tools, which is why several universities around the world already use Sage at the undergraduate level.
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
“Computational Mathematics, Algorithms, and Data Processing” of MDPI consists of articles on new mathematical tools and numerical methods for computational problems. Topics covered include: numerical stability, interpolation, approximation, complexity, numerical linear algebra, differential equations (ordinary, partial), optimization, integral equations, systems of nonlinear equations, compression or distillation, and active learning.
One of Springer’s renowned Major Reference Works, this awesome achievement provides a comprehensive set of solutions to important algorithmic problems for students and researchers interested in quickly locating useful information. This first edition of the reference focuses on high-impact solutions from the most recent decade, while later editions will widen the scope of the work. All entries have been written by experts, while links to Internet sites that outline their research work are provided. The entries have all been peer-reviewed. This defining reference is published both in print and on line.