Practical Stress Analysis with Finite Elements (3rd Edition)

Practical Stress Analysis with Finite Elements (3rd Edition)

Author: Bryan J Mac Donald

Publisher:

Published: 2020-06-22

Total Pages: 454

ISBN-13: 9781908689412

DOWNLOAD EBOOK

Are you tired of picking up a book that claims to be on "practical" finite element analysis only to find that it is full of the same old theory rehashed and contains no advice to help you plan your analysis? If so then this book is for you!


Finite Element Modeling for Stress Analysis

Finite Element Modeling for Stress Analysis

Author: Robert D. Cook

Publisher: John Wiley & Sons

Published: 1995-01-12

Total Pages: 344

ISBN-13:

DOWNLOAD EBOOK

This undergraduate text is designed for those who will use finite elements in their daily work. It emphasizes the behaviour of finite elements, and describes how to use the methods successfully while including enough theory to explain why elements behave as they do.


Hybrid Finite Element Method for Stress Analysis of Laminated Composites

Hybrid Finite Element Method for Stress Analysis of Laminated Composites

Author: Suong Van Hoa

Publisher: Springer Science & Business Media

Published: 1998-03-31

Total Pages: 312

ISBN-13: 9780792381365

DOWNLOAD EBOOK

This book has one single purpose: to present the development of the partial hybrid finite element method for the stress analysis of laminated composite structures. The reason for this presentation is because the authors believe that partial hybrid finite element method is more efficient that the displacement based finite element method for the stress analysis oflaminated composites. In fact, the examples in chapter 5 of this book show that the partial hybrid finite element method is about 5 times more efficient than the displacement based finite element method. Since there is a great need for accurate and efficient calculation of interlaminar stresses for the design using composites, the partial hybrid finite method does provide one possible solution. Hybrid finite method has been in existence since 1964 and a significant amount of work has been done on the topic. However, the authors are not aware of any systematic piece of literature that gives a detailed presentation of the method. Chapters of the displacement finite element method and the evolution 1 and 2 present a sununary of the hybrid finite element method. Hopefully, these two chapters can provide the readers with an appreciation for the difference between the displacement finite element method and the hybrid finite element. It also should prepare the readers for the introduction of partial hybrid finite element method presented in chapter 3.


Elements of Experimental Stress Analysis

Elements of Experimental Stress Analysis

Author: A. W. Hendry

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 202

ISBN-13: 1483153207

DOWNLOAD EBOOK

Elements of Experimental Stress Analysis describes the principles of the techniques and equipment used in stress analysis and suggests appropriate applications of these in laboratory and field investigations. Examples from the field of civil engineering are used to illustrate the various methods of analysis. This book is comprised of 12 chapters and begins with a discussion on the use of models, scale factors, and materials in experimental stress analysis. The next chapter focuses on the application of load to the element under test, with emphasis on the means of creating the required forces; the means of applying these forces to the test piece; and the means of measuring the forces. The reader is then introduced to the principles of various types of strain gauges, as well as the methods of calculating stresses from strains in the case of elastic materials. Subsequent chapters explore two-dimensional photoelasticity; the frozen stress method and surface coating techniques; structural model analysis; special instruments for dynamic stress analysis; analogue methods for dealing with stress problems; and how to select a method of stress analysis. This monograph will be of use to all undergraduate and postgraduate students who require a basic knowledge of experimental stress analysis, and also to practicing engineers who may be concerned with experimental investigations in one way or another.


Structural and Stress Analysis

Structural and Stress Analysis

Author: T.H.G. Megson

Publisher: Elsevier

Published: 2005-02-17

Total Pages: 739

ISBN-13: 0080455344

DOWNLOAD EBOOK

Structural analysis is the corner stone of civil engineering and all students must obtain a thorough understanding of the techniques available to analyse and predict stress in any structure. The new edition of this popular textbook provides the student with a comprehensive introduction to all types of structural and stress analysis, starting from an explanation of the basic principles of statics, normal and shear force and bending moments and torsion. Building on the success of the first edition, new material on structural dynamics and finite element method has been included.Virtually no prior knowledge of structures is assumed and students requiring an accessible and comprehensive insight into stress analysis will find no better book available. - Provides a comprehensive overview of the subject providing an invaluable resource to undergraduate civil engineers and others new to the subject - Includes numerous worked examples and problems to aide in the learning process and develop knowledge and skills - Ideal for classroom and training course usage providing relevant pedagogy


Elements of Stress Analysis

Elements of Stress Analysis

Author: Jacques Heyman

Publisher: Cambridge University Press

Published: 1982-04

Total Pages: 124

ISBN-13: 9780521245234

DOWNLOAD EBOOK

This book analyses problems in elasticity theory, highlighting elements of structural analysis in a simple and straightforward way.


Practical Finite Element Analysis

Practical Finite Element Analysis

Author: Nitin S. Gokhale

Publisher: FINITE TO INFINITE

Published: 2008

Total Pages: 27

ISBN-13: 8190619500

DOWNLOAD EBOOK

Highlights of the book: Discussion about all the fields of Computer Aided Engineering, Finite Element Analysis Sharing of worldwide experience by more than 10 working professionals Emphasis on Practical usuage and minimum mathematics Simple language, more than 1000 colour images International quality printing on specially imported paper Why this book has been written ... FEA is gaining popularity day by day & is a sought after dream career for mechanical engineers. Enthusiastic engineers and managers who want to refresh or update the knowledge on FEA are encountered with volume of published books. Often professionals realize that they are not in touch with theoretical concepts as being pre-requisite and find it too mathematical and Hi-Fi. Many a times these books just end up being decoration in their book shelves ... All the authors of this book are from IIT€™s & IISc and after joining the industry realized gap between university education and the practical FEA. Over the years they learned it via interaction with experts from international community, sharing experience with each other and hard route of trial & error method. The basic aim of this book is to share the knowledge & practices used in the industry with experienced and in particular beginners so as to reduce the learning curve & avoid reinvention of the cycle. Emphasis is on simple language, practical usage, minimum mathematics & no pre-requisites. All basic concepts of engineering are included as & where it is required. It is hoped that this book would be helpful to beginners, experienced users, managers, group leaders and as additional reading material for university courses.


Structural Hot-Spot Stress Approach to Fatigue Analysis of Welded Components

Structural Hot-Spot Stress Approach to Fatigue Analysis of Welded Components

Author: Erkki Niemi

Publisher: Springer

Published: 2017-08-28

Total Pages: 85

ISBN-13: 9811055688

DOWNLOAD EBOOK

This book provides background and guidance on the use of the structural hot-spot stress approach to fatigue analysis. The book also offers Design S-N curves for use with the structural hot-spot stress for a range of weld details, and presents parametric formulas for calculating stress increases due to misalignment and structural discontinuities. Highlighting the extension to structures fabricated from plates and non-tubular sections. The structural hot-spot stress approach focuses on cases of potential fatigue cracking from the weld toe and it has been in use for many years in tubular joints. Following an explanation of the structural hot-spot stress, its definition and its relevance to fatigue, the book describes methods for its determination. It considers stress determination from both finite element analysis and strain gauge measurements, and emphasizes the use of finite element stress analysis, providing guidance on the choice of element type and size for use with either solid or shell elements. Lastly, it illustrates the use of the recommendations in four case studies involving the fatigue assessment of welded structures using the structural hot-spot stress


Analysis of Machine Elements Using SOLIDWORKS Simulation 2022

Analysis of Machine Elements Using SOLIDWORKS Simulation 2022

Author: Shahin S. Nudehi

Publisher: SDC Publications

Published:

Total Pages: 556

ISBN-13: 1630574813

DOWNLOAD EBOOK

Analysis of Machine Elements Using SOLIDWORKS Simulation 2022 is written primarily for first-time SOLIDWORKS Simulation 2022 users who wish to understand finite element analysis capabilities applicable to stress analysis of mechanical elements. The focus of examples is on problems commonly found in introductory, undergraduate, Design of Machine Elements or similarly named courses. In order to be compatible with most machine design textbooks, this text begins with problems that can be solved with a basic understanding of mechanics of materials. Problem types quickly migrate to include states of stress found in more specialized situations common to a design of mechanical elements course. Paralleling this progression of problem types, each chapter introduces new software concepts and capabilities. Many examples are accompanied by problem solutions based on use of classical equations for stress determination. Unlike many step-by-step user guides that only list a succession of steps, which if followed correctly lead to successful solution of a problem, this text attempts to provide insight into why each step is performed. This approach amplifies two fundamental tenets of this text. The first is that a better understanding of course topics related to stress determination is realized when classical methods and finite element solutions are considered together. The second tenet is that finite element solutions should always be verified by checking, whether by classical stress equations or experimentation. Each chapter begins with a list of learning objectives related to specific capabilities of the SOLIDWORKS Simulation program introduced in that chapter. Most software capabilities are repeated in subsequent examples so that users gain familiarity with their purpose and are capable of using them in future problems. All end-of-chapter problems are accompanied by evaluation "check sheets" to facilitate grading assignments.


Stress Analysis of Fiber-reinforced Composite Materials

Stress Analysis of Fiber-reinforced Composite Materials

Author: M. W. Hyer

Publisher: DEStech Publications, Inc

Published: 2009

Total Pages: 718

ISBN-13: 193207886X

DOWNLOAD EBOOK

Updated and improved, Stress Analysis of Fiber-Reinforced Composite Materials, Hyer's work remains the definitive introduction to the use of mechanics to understand stresses in composites caused by deformations, loading, and temperature changes. In contrast to a materials science approach, Hyer emphasizes the micromechanics of stress and deformation for composite material analysis. The book provides invaluable analytic tools for students and engineers seeking to understand composite properties and failure limits. A key feature is a series of analytic problems continuing throughout the text, starting from relatively simple problems, which are built up step-by-step with accompanying calculations. The problem series uses the same material properties, so the impact of the elastic and thermal expansion properties for a single-layer of FR material on the stress, strains, elastic properties, thermal expansion and failure stress of cross-ply and angle-ply symmetric and unsymmetric laminates can be evaluated. The book shows how thermally induced stresses and strains due to curing, add to or subtract from those due to applied loads.Another important element, and one unique to this book, is an emphasis on the difference between specifying the applied loads, i.e., force and moment results, often the case in practice, versus specifying strains and curvatures and determining the subsequent stresses and force and moment results. This represents a fundamental distinction in solid mechanics.