This lucid, non-intimidating presentation by a Russian scholar explores propositional logic, propositional calculus, and predicate logic. Topics include computer science and systems analysis, linguistics, and problems in the foundations of mathematics. Accessible to high school students, it also constitutes a valuable review of fundamentals for professionals. 1970 edition.
"This accessible, applications-related introductory treatment explores some of the structure of modern symbolic logic useful in the exposition of elementary mathematics. Topics include axiomatic structure and the relation of theory to interpretation. No prior training in logic is necessary, and numerous examples and exercises aid in the mastery of the language of logic. 1959 edition"--
Elementary Logic explains what logic is, how it is done, and why it can be exciting. The book covers the central part of logic that all students have to learn: propositional logic. It aims to provide a crystal-clear introduction to what is often regarded as the most technically difficult area in philosophy. The book opens with an explanation of what logic is and how it is constructed. Subsequent chapters take the reader step-by-step through all aspects of elementary logic. Throughout, ideas are explained simply and directly, with the chapters packed with overviews, illustrative examples, and summaries. Each chapter builds on previous explanation and example, with the final chapters presenting more advanced methods. After a discussion of meta-logic and logical systems, the book closes with an exploration of how paradoxes can exist in the world of logic. Elementary Logic's clarity and engagement make it ideal for any reader studying logic for the first time.
This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.
Using set theory in the first part of his book, and proof theory in the second, Gaisi Takeuti gives us two examples of how mathematical logic can be used to obtain results previously derived in less elegant fashion by other mathematical techniques, especially analysis. In Part One, he applies Scott- Solovay's Boolean-valued models of set theory to analysis by means of complete Boolean algebras of projections. In Part Two, he develops classical analysis including complex analysis in Peano's arithmetic, showing that any arithmetical theorem proved in analytic number theory is a theorem in Peano's arithmetic. In doing so, the author applies Gentzen's cut elimination theorem. Although the results of Part One may be regarded as straightforward consequences of the spectral theorem in function analysis, the use of Boolean- valued models makes explicit and precise analogies used by analysts to lift results from ordinary analysis to operators on a Hilbert space. Essentially expository in nature, Part Two yields a general method for showing that analytic proofs of theorems in number theory can be replaced by elementary proofs. Originally published in 1978. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
This is a mathematics textbook with theorems and proofs. The choice of topics has been guided by the needs of computer science students. The method of semantic tableaux provides an elegant way to teach logic that is both theoretically sound and yet sufficiently elementary for undergraduates. In order to provide a balanced treatment of logic, tableaux are related to deductive proof systems. The book presents various logical systems and contains exercises. Still further, Prolog source code is available on an accompanying Web site. The author is an Associate Professor at the Department of Science Teaching, Weizmann Institute of Science.
In this pioneering work, the author develops a fundamental formulation of logic in terms of theory of matrices and vector spaces. The discovery of matrix logic represents a landmark in the further formalization of logic. For the first time the power of direct mathematical computation is applied to the whole set of logic operations, allowing the derivation of both the classical and modal logics from the same formal base.The new formalism allows the author to enlarge the alphabet of the truth-values with negative logic antivalues and to link matrix logic descriptions with the Dirac formulation of quantum theory - a result having fundamental implications and repercussions for science as a whole.As a unified language which permits a logical examination of the underlying phenomena of quantum field theory and vice versa, matrix logic opens new avenues for the study of fundamental interactions and gives rise to a revolutionary conclusion that physics as such can be viewed and studied as a logic in the fundamental sense.Finally, modelling itself on exact sciences, matrix logic does not refute the classical logic but instead incorporates it as a special deterministic limit. The book requires multidisciplinary knowledge and will be of interest to physicists, mathematicians, computer scientists and engineers.
Clear, comprehensive, and rigorous treatment develops the subject from elementary concepts to the construction and analysis of relatively complex logical languages. Hundreds of problems, examples, and exercises. 1958 edition.
The book covers elementary aspects of category theory and topos theory. It has few mathematical prerequisites, and uses categorical methods throughout rather than beginning with set theoretic foundations. It works with key notions such as cartesian closedness, adjunctions, regular categories, and the internal logic of a topos. Full statements and elementary proofs are given for the central theorems, including the fundamental theorem of toposes, the sheafification theorem, and the construction of Grothendieck toposes over any topos as base. Three chapters discuss applications of toposes in detail, namely to sets, to basic differential geometry, and to recursive analysis. - ;Introduction; PART I: CATEGORIES: Rudimentary structures in a category; Products, equalizers, and their duals; Groups; Sub-objects, pullbacks, and limits; Relations; Cartesian closed categories; Product operators and others; PART II: THE CATEGORY OF CATEGORIES: Functors and categories; Natural transformations; Adjunctions; Slice categories; Mathematical foundations; PART III: TOPOSES: Basics; The internal language; A soundness proof for topos logic; From the internal language to the topos; The fundamental theorem; External semantics; Natural number objects; Categories in a topos; Topologies; PART IV: SOME TOPOSES: Sets; Synthetic differential geometry; The effective topos; Relations in regular categories; Further reading; Bibliography; Index. -