This volume deals with the electroweak interactions at low and high energies. The results of the collider experiments are discussed, and the low energy experiments with complications for astrophysics are considered. Also, theoretical developments are presented to highlight the impact of forthcoming experiments and to find new directions of study.
This up-to-date volume reviews the recent contributions of electron-positron colliders to the precision test of the electroweak Standard Model. In particular, it contains a short summary of the measurements at the Z resonance and gives an overview of the electroweak processes above the Z. Subsequently, the measurement of the W mass at LEP is discussed in detail. The implications for the precision test of the Standard Model are presented, giving the status of the global electroweak fit before the startup of Large Hadron Collider. The final chapters give an outlook on the electroweak physics at a future linear collider. The book also features many illustrations and tables. Readers obtain a coherent overview of the results of 20 years of electroweak physics conducted at electron-positron colliders.
During more than 10 years, from 1989 until 2000, the LEP accelerator and the four LEP experiments, ALEPH, DELPHI, L3 and OPAL, have taken data for a large amount of measurements at the frontier of particle physics. The main outcome is a thorough and successful test of the Standard Model of electroweak interactions. Mass and width of the Z and W bosons were measured precisely, as well as the Z and photon couplings to fermions and the couplings among gauge bosons. The rst part of this work will describe the most important physics results of the LEP experiments. Emphasis is put on the properties of the W boson, which was my main research eld at LEP. Especially the precise determination of its mass and its couplings to the other gauge bosons will be described. Details on physics effects like Colour Reconnection and Bose-Einstein Correlations in W-pair events shall be discussed as well. A conclusive summary of the current electroweak measurements, including low-energy results, as the pillars of possible future ndings will be given. The important contributions from Tevatron, like the measurement of the top quark and W mass, will round up the present day picture of electroweak particle physics.
The implications of the latest results from high energy experiments as well as non-accelerator experiments are discussed in this proceedings. Emphasis is given to neutrino physics, tests of the standard electroweak theory, and its extensions. Perspectives for the physics of the new decade are also considered.
An exploration of the intersection of particle physics, astrophysics, and cosmology known as astroparticle physics. Extreme electromagnetic conditions present in puslars and other stars allow for investigations of the role of quantum processes in the dynamics of astrophysical objects and in the early Universe. Based in part on the authors' own work, this book systematically describes several methods of calculation of the effects of strong electromagnetic fields in quantum processes using analytical solutions of the Dirac equation and Feynmann diagrams at both the loop and tree levels. The consideration is emphasized at the two limiting cases: the case of a very strong magnetic field, and the case of a crossed field. The presentation will appeal to graduate students of theoretical physics with prior understanding of Quantum Field Theory (QFT) and the Standard Model of Electroweak Interactions, as well as specialists in QFT wishing to know more about the problems of quantum phenomena in external electomagnetic fields.
After an introduction to relativistic quantum mechanics, which lays the foundation for the rest of the text, the author moves on to the phenomenology and physics of fundamental interactions via a detailed discussion of the empirical principles of unified theories of strong, electromagnetic, and weak interactions. There then follows a development of local gauge theories and the minimal standard model of the fundamental interactions together with their characteristic applications. The book concludes with further possibilities and the theory of interactions for elementary particles probing complex nuclei. Numerous exercises with solutions make this an ideal text for graduate courses on quantum mechanics and elementary particle physics.
The book discusses the recent experimental results obtained at the LHC that involve electroweak bosons. The results are placed into an appropriate theoretical and historical context. The work pays special attention to the rising subject of hadronically decaying bosons with high boosts, documenting the state-of-the-art identification techniques and highlighting typical results. The text is not limited to electroweak physics in the strict sense, but also discusses the use of electroweak vector-bosons as tool in the study of other subjects in particle physics, such as determinations of the proton structure or the search for new exotic particles. The book is particularly well suited for graduate students, starting their thesis work on topics that involve electroweak bosons, as the book provides a comprehensive description of phenomena observable at current accelerators as well as a summary of the most relevant experimental techniques.
A thoroughly revised edition of a landmark textbook on gauge theories and their applications to particle physics This completely revised and updated graduate-level textbook is an ideal introduction to gauge theories and their applications to high-energy particle physics, and takes an in-depth look at two new laws of nature—quantum chromodynamics and the electroweak theory. From quantum electrodynamics through unified theories of the interactions among leptons and quarks, Chris Quigg examines the logic and structure behind gauge theories and the experimental underpinnings of today's theories. Quigg emphasizes how we know what we know, and in the era of the Large Hadron Collider, his insightful survey of the standard model and the next great questions for particle physics makes for compelling reading. The brand-new edition shows how the electroweak theory developed in conversation with experiment. Featuring a wide-ranging treatment of electroweak symmetry breaking, the physics of the Higgs boson, and the importance of the 1-TeV scale, the book moves beyond established knowledge and investigates the path toward unified theories of strong, weak, and electromagnetic interactions. Explicit calculations and diverse exercises allow readers to derive the consequences of these theories. Extensive annotated bibliographies accompany each chapter, amplify points of conceptual or technical interest, introduce further applications, and lead readers to the research literature. Students and seasoned practitioners will profit from the text's current insights, and specialists wishing to understand gauge theories will find the book an ideal reference for self-study. Brand-new edition of a landmark text introducing gauge theories Consistent attention to how we know what we know Explicit calculations develop concepts and engage with experiment Interesting and diverse problems sharpen skills and ideas Extensive annotated bibliographies