Analysis of Electromagnetic Scattering from Irregularly Shaped, Thin, Metallic Flat Plates

Analysis of Electromagnetic Scattering from Irregularly Shaped, Thin, Metallic Flat Plates

Author: National Aeronautics and Space Adm Nasa

Publisher: Independently Published

Published: 2018-10-26

Total Pages: 56

ISBN-13: 9781729303696

DOWNLOAD EBOOK

This report describes an application of the method of moments to calculate the electromagnetic scattering from irregularly shaped, thin, metallic flat plates in free space. In the present technique, an irregularly shaped plate is enclosed by a rectangle on which the surface-current density is then expressed in terms of subdomain functions by dividing the rectangle into subsections. A shape function is introduced to ensure zero current outside the patch. The surface-current density is determined using the electric field integral equation (EFIE) approach in conjunction with the method of moments, and from a knowledge of the surface-current density, the electromagnetic scattering from a plate is calculated. Using this technique, the electromagnetic scattering from a hexagonal plate; an equilateral triangular plate; an equilateral triangular plate with a concentric, equilateral triangular hole and an inverted, equilateral triangular hole; and a diamond-shaped plate is computed and compared with the numerical results obtained by using the Electromagnetic Surface Patch (ESP) code developed by Ohio State University. The numerical results compare favorably with the measurements performed on these shapes in the Langley Experimental Test Range facility. Deshpande, Manohar D. and Cockrell, C. R. and Beck, Fred B. and Vedeler, Erik and Koch, Melissa B. Langley Research Center


Study of Electromagnetic Scattering From Material Object Doped Randomely With Thin Metallic Wires Using Finite Element Method

Study of Electromagnetic Scattering From Material Object Doped Randomely With Thin Metallic Wires Using Finite Element Method

Author:

Publisher:

Published: 2005

Total Pages: 5

ISBN-13:

DOWNLOAD EBOOK

A new numerical simulation method using the finite element methodology (FEM) is presented to study electromagnetic scattering due to an arbitrarily shaped material body doped randomly with thin and short metallic wires. The FEM approach described in many standard text books [1,2] is appropriately modified to account for the presence of thin and short metallic wires distributed randomly inside an arbitrarily shaped material body. Using this modified FEM approach, the electromagnetic scattering due to cylindrical, spherical material body doped randomly with thin metallic wires is studied.


Electromagnetic Shielding

Electromagnetic Shielding

Author: Salvatore Celozzi

Publisher: John Wiley & Sons

Published: 2008-05-16

Total Pages: 385

ISBN-13: 0470268476

DOWNLOAD EBOOK

The definitive reference on electromagnetic shielding materials, configurations, approaches, and analyses This reference provides a comprehensive survey of options for the reduction of the electromagnetic field levels in prescribed areas. After an introduction and an overview of available materials, it discusses figures of merit for shielding configurations, the shielding effectiveness of stratified media, numerical methods for shielding analyses, apertures in planar metal screens, enclosures, and cable shielding. Up to date and comprehensive, Electromagnetic Shielding: Explores new and innovative techniques in electromagnetic shielding Presents a critical approach to electromagnetic shielding that highlights the limits of formulations based on plane-wave sources Analyzes aspects not normally considered in electromagnetic shielding, such as the effects of the content of the shielding enclosures Includes references at the end of each chapter to facilitate further study The last three chapters discuss frequency-selective shielding, shielding design procedures, and uncommon ways of shielding—areas ripe for further research. This is an authoritative, hands-on resource for practicing telecommunications and electrical engineers, as well as researchers in industry and academia who are involved in the design and analysis of electromagnetic shielding structures.


Integral Equation Methods in Scattering Theory

Integral Equation Methods in Scattering Theory

Author: David Colton

Publisher: SIAM

Published: 2013-11-15

Total Pages: 286

ISBN-13: 1611973155

DOWNLOAD EBOOK

This classic book provides a rigorous treatment of the Riesz?Fredholm theory of compact operators in dual systems, followed by a derivation of the jump relations and mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions. These results are then used to study scattering problems for the Helmholtz and Maxwell equations. Readers will benefit from a full discussion of the mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions, an in-depth treatment of the use of boundary integral equations to solve scattering problems for acoustic and electromagnetic waves, and an introduction to inverse scattering theory with an emphasis on the ill-posedness and nonlinearity of the inverse scattering problem.


Electromagnetic Wave Theory

Electromagnetic Wave Theory

Author: Jin Au Kong

Publisher: Wiley-Interscience

Published: 1990

Total Pages: 728

ISBN-13:

DOWNLOAD EBOOK

This is a first year graduate text on electromagnetic field theory emphasizing mathematical approaches, problem solving and physical interpretation. Examples deal with guidance, propagation, radiation and scattering of electromagnetic waves, metallic and dielectric wave guides, resonators, antennas and radiating structures, Cerenkov radiation, moving media, plasmas, crystals, integrated optics, lasers and fibers, remote sensing, geophysical probing, dipole antennas and stratified media.