This book highlights the state of the art in solid electrolytes, with particular emphasis on lithium garnets, electrolyte-electrode interfaces and all-solid-state batteries based on lithium garnets. Written by an international group of renowned experts, the book addresses how garnet-type solid electrolytes are contributing to the development of safe high energy density Li batteries. Unlike the flammable organic liquid electrolyte used in existing rechargeable Li batteries, garnet-type solid electrolytes are intrinsically chemically stable in contact with metallic lithium and potential positive electrodes, while offering reasonable Li conductivity. The book's respective chapters cover a broad spectrum of topics related to solid electrolytes, including interfacial engineering to resolve the electrolyte-electrode interfaces, the latest developments in the processing of thin and ultrathin lithium garnet membranes, and fabrication strategies for the high-performance solid-state batteries.This highly informative and intriguing book will appeal to postgraduate students and researchers at academic and industrial laboratories with an interest in the advancement of high energy-density lithium metal batteries
The aim of this book is to provide the reader with a modern presentation of ionic solutions at interfaces, for physical chemists, chemists and theoretically oriented experimentalists in this field. The discussion is mainly on the structural and thermodynamic properties, in relation to presently available statistical mechanical models. Some dynamic properties are also presented, at a more phenomenological level. The initial chapters are devoted to the presentation of some basic concepts for bulk properties: hydrodynamic interactions, electrostatics, van der Waals forces and thermodynamics of ionic solutions in the framework of a particular model: the mean spherical approximation (MSA). Specific features of interfaces are then discussed: experimental techniques such as in-situ X-ray diffraction, STM and AFM microscopy are described. Ions at liquid/air, liquid/metal and liquid/liquid interfaces are considered from the experimental and theoretical viewpoint. Lastly some dynamic (transport) properties are included, namely the self-diffusion and conductance of small colloids (polyelectrolytes and micelles) and the kinetics of solute transfer at free liquid/liquid interfaces.
Graphene–electrolyte systems are commonly found in cutting-edge research on electrochemistry, biotechnology, nanoelectronics, energy storage, materials engineering, and chemical engineering. The electrons in graphene intimately interact with ions from an electrolyte at the graphene–electrolyte interface, where the electrical or chemical properties of both graphene and electrolyte could be affected. The electronic behavior therefore determines the performance of applications in both Faradaic and non-Faradaic processes, which require intensive studies. This book systematically integrates the electronic theory and experimental techniques for both graphene and electrolytes. The theoretical sections detail the classical and quantum description of electron transport in graphene and the modern models for charges in electrolytes. The experimental sections compile common techniques for graphene growth/characterization and electrochemistry. Based on this knowledge, the final chapter reviews a few applications of graphene–electrolyte systems in biosensing, neural recording, and enhanced electronic devices, in order to inspire future developments. This multidisciplinary book is ideal for a wide audience, including physicists, chemists, biologists, electrical engineers, materials engineers, and chemical engineers.
Studies on the electrochemical processes at the interface between two immiscible liquids began a long time ago: they date back to the end of the last century. Such celebrated scientists as Nemst and Haber, and also young A. N. Frumkin were among those who originated this science. Later A. N. Frumkin went a long way in furthering the studies at the Institute of Electrochemistry. The theory of the appearance of potential in a system of two immiscible electrolytes was developed and experimentally verified before the beginning of the thirties. In later years the studies in this area considerably lagged behind those conducted at metal electrodes which were widely used in different industries. In the past 15 years, however, the situation has radically changed and we have witnessed a drastic increase in the number of publications on the electrochemistry of immiscible electrolytes. We are glad to note that the investiga tions show not only a quantitative but also a qualitative change. The theoretical works on the oil/water interface test not only the thermodynamic aspects of the inter face but also recreate the molecular picture of the process. Along with the now con ventional oilfwater system, electrochemical studies are made on various membranes, including the frnest bilayer lipid membranes, and also on microemulsion systems. A prominent place in the investigation of the oil/water interface is occupied by photoprocesses that come into play at the interface between two ionic conductors.
Solid-state batteries hold the promise of providing energy storage with high volumetric and gravimetric energy densities at high power densities, yet with far less safety issues relative to those associated with conventional liquid or gel-based lithium-ion batteries. Solid-state batteries are envisioned to be useful for a broad spectrum of energy storage applications, including powering automobiles and portable electronic devices, as well as stationary storage and load-leveling of renewably generated energy. This comprehensive handbook covers a wide range of topics related to solid-state batteries, including advanced enabling characterization techniques, fundamentals of solid-state systems, novel solid electrolyte systems, interfaces, cell-level studies, and three-dimensional architectures. It is directed at physicists, chemists, materials scientists, electrochemists, electrical engineers, battery technologists, and evaluators of present and future generations of power sources. This handbook serves as a reference text providing state-of-the-art reviews on solid-state battery technologies, as well as providing insights into likely future developments in the field. It is extensively annotated with comprehensive references useful to the student and practitioners in the field.
Adsorption from Solutions of Non-Electrolytes provides a general discussion of the subject, which has so far been given little or no attention in current textbooks of physical chemistry. A general view of the subject is particularly needed at a time when we wish to see how far it will be possible to use theories of solutions to explain the phenomena of adsorption. The book opens with an introductory chapter on the types of interface, aspects of adsorption from solution, types of adsorption, and classification of systems. This is followed by separate chapters on experimental methods, adsorption at the liquid-solid interface, adsorption from completely miscible and partially liquids, adsorption of gases and solids from solution, adsorption of polymers, and adsorption in multicomponent systems. Subsequent chapters deal with factors influencing competitive adsorption at the liquid-solid interface. adsorption at the liquid-vapor and liquid-liquid interface, kinetics and thermodynamics of adsorption from the liquid phase, the use of columns in adsorption, and use of adsorption from solution to measure surface area.
Molecular surface science has made enormous progress in the past 30 years. The development can be characterized by a revolution in fundamental knowledge obtained from simple model systems and by an explosion in the number of experimental techniques. The last 10 years has seen an equally rapid development of quantum mechanical modeling of surface processes using Density Functional Theory (DFT). Chemical Bonding at Surfaces and Interfaces focuses on phenomena and concepts rather than on experimental or theoretical techniques. The aim is to provide the common basis for describing the interaction of atoms and molecules with surfaces and this to be used very broadly in science and technology. The book begins with an overview of structural information on surface adsorbates and discusses the structure of a number of important chemisorption systems. Chapter 2 describes in detail the chemical bond between atoms or molecules and a metal surface in the observed surface structures. A detailed description of experimental information on the dynamics of bond-formation and bond-breaking at surfaces make up Chapter 3. Followed by an in-depth analysis of aspects of heterogeneous catalysis based on the d-band model. In Chapter 5 adsorption and chemistry on the enormously important Si and Ge semiconductor surfaces are covered. In the remaining two Chapters the book moves on from solid-gas interfaces and looks at solid-liquid interface processes. In the final chapter an overview is given of the environmentally important chemical processes occurring on mineral and oxide surfaces in contact with water and electrolytes. - Gives examples of how modern theoretical DFT techniques can be used to design heterogeneous catalysts - This book suits the rapid introduction of methods and concepts from surface science into a broad range of scientific disciplines where the interaction between a solid and the surrounding gas or liquid phase is an essential component - Shows how insight into chemical bonding at surfaces can be applied to a range of scientific problems in heterogeneous catalysis, electrochemistry, environmental science and semiconductor processing - Provides both the fundamental perspective and an overview of chemical bonding in terms of structure, electronic structure and dynamics of bond rearrangements at surfaces