Majors and non-majors in electricity will benefit from this easy-to-understand and highly illustrated introduction to DC and AC electrical theory, circuits, and equipment. The only prequisites are algebra and a basic knowledge of trigonometry. This updated edition reflects changes in industry resulting from increasing computerization of electrical equipment. Modern solid-state components are covered in appropriate sections throughout the book. These components are especially featured in the area of industrial controls.
This introduction to DC/AC circuit analysis includes abundant examples of electronics applications as well as coverage of machines. The first part introduces DC circuits, measuring instruments, and machines, while the second part examines the effect of alternating current on electric circuits, generators, and motors. Appropriate for courses in circuit analysis and electronics
Master electric circuits, machines, devices, and power electronics hands on-without expensive equipment. In LabVIEW for Electric Circuits, Machines, Drives, and LaboratoriesDr. Nesimi Ertugrul uses custom-written LabVIEW Virtual Instruments to illuminate the analysis and operation of a wide range of AC and DC circuits, electrical machines, and drives-including high-voltage/current/power applications covered in no other book. Includes detailed background, VI panels, lab practices, hardware information, and self-study questions - everything you need to achieve true mastery.
There is a large gap between what you learn in college and the practical knowhow demanded in the working environment, running and maintaining electrical equipment and control circuits. Practical Troubleshooting of Electrical Equipment and Control Circuits focuses on the hands-on knowledge and rules-of-thumb that will help engineers and employers by increasing knowledge and skills, leading to improved equipment productivity and reduced maintenance costs. Practical Troubleshooting of Electrical Equipment and Control Circuits will help engineers and technicians to identify, prevent and fix common electrical equipment and control circuits. The emphasis is on practical issues that go beyond typical electrical principles, providing a tool-kit of skills in solving electrical problems, ranging from control circuits to motors and variable speed drives. The examples in the book are designed to be applicable to any facility. - Discover the practical knowhow and rules-of-thumb they don't teach you in the classroom - Diagnose electrical problems 'right first time' - Reduce downtime
This book aims to offer a thorough study and reference textbook on electrical machines and drives. The basic idea is to start from the pure electromagnetic principles to derive the equivalent circuits and steady-state equations of the most common electrical machines (in the first parts). Although the book mainly concentrates on rotating field machines, the first two chapters are devoted to transformers and DC commutator machines. The chapter on transformers is included as an introduction to induction and synchronous machines, their electromagnetics and equivalent circuits. Chapters three and four offer an in-depth study of induction and synchronous machines, respectively. Starting from their electromagnetics, steady-state equations and equivalent circuits are derived, from which their basic properties can be deduced. The second part discusses the main power-electronic supplies for electrical drives, for example rectifiers, choppers, cycloconverters and inverters. Much attention is paid to PWM techniques for inverters and the resulting harmonic content in the output waveform. In the third part, electrical drives are discussed, combining the traditional (rotating field and DC commutator) electrical machines treated in the first part and the power electronics of part two. Field orientation of induction and synchronous machines are discussed in detail, as well as direct torque control. In addition, also switched reluctance machines and stepping motors are discussed in the last chapters. Finally, part 4 is devoted to the dynamics of traditional electrical machines. Also for the dynamics of induction and synchronous machine drives, the electromagnetics are used as the starting point to derive the dynamic models. Throughout part 4, much attention is paid to the derivation of analytical models. But, of course, the basic dynamic properties and probable causes of instability of induction and synchronous machine drives are discussed in detail as well, with the derived models for stability in the small as starting point. In addition to the study of the stability in the small, a chapter is devoted to large-scale dynamics as well (e.g. sudden short-circuit of synchronous machines). The textbook is used as the course text for the Bachelor’s and Master’s programme in electrical and mechanical engineering at the Faculty of Engineering and Architecture of Ghent University. Parts 1 and 2 are taught in the basic course ’Fundamentals of Electric Drives’ in the third bachelor. Part 3 is used for the course ’Controlled Electrical Drives’ in the first master, while Part 4 is used in the specialised master on electrical energy.
The book is designed to cover the study of electro-mechanical energy converters in all relevant aspects, and also to acquaint oneself of a single treatment for all types of machines for modelling and analysis. The book starts with the general concepts of energy conversion and basic circuit elements, followed by a review of the mathematical tools. The discussion goes on to introduce the concepts of energy storage in magnetic field, electrical circuits used in rotary electro-mechanical devices and three-phase systems with their transformation. The book, further, makes the reader familiar with the modern aspects of analysis of machines like transient and dynamic operation of machines, asymmetrical and unbalanced operation of poly-phase induction machines, and finally gives a brief exposure to space phasor concepts.
This textbook provides an introduction to circuits, systems, and motors for students in electrical engineering as well as other majors that need an introduction to circuits. Unlike most other textbooks that highlight only circuit theory, this book goes into detail on many practical aspects of working with circuits, including electrical safety and the proper method to measure the relevant circuit parameters using modern measurement systems. Coverage also includes a detailed discussion of motors and generators, including brushless DC motors, as these are critical topics in the robotic and mechatronics industries. Lastly, the book discusses A/D and D/A converters given their importance in modern measurement and control systems. In addition to covering the basic circuit concepts, the author also provides the students with the necessary mathematics to analyze correctly the circuit concepts being presented. The chapter on phasor domain circuit analysis begins with a detailed review of complex numbers as many students are weak in this area. Likewise, before discussing filters and Bode Diagrams, the Fourier Transform and later the Laplace Transform are explained.
Relevant applications to electronics, telecommunications and power systems are included in a comprehensive introduction to the theory of electronic circuits for physical science students.