Electric power engineering has always been an integral part of electrical engineering education. Providing a unique alternative to existing books on the market, this text presents a concise and rigorous exposition of the main fundamentals of electric power engineering. Contained in a single volume, the materials can be used to teach three separate courses — electrical machines, power systems and power electronics, which are in the mainstream of the electrical engineering curriculum of most universities worldwide. The book also highlights an in-depth review of electric and magnetic circuit theory with emphasis on the topics which are most relevant to electric power engineering.
The astounding technological developments of our age depend on a safe, reliable, and economical supply of electric power. It stands central to continued innovations and particularly to the future of developing countries. Therefore, the importance of electric power engineering cannot be overstated, nor can the importance of this handbook to the power engineer. Until now, however, power engineers have had no comprehensive reference to help answer their questions quickly, concisely, and authoritatively-A one-stop reference written by electric power engineers specifically for electric power engineers.
A valuable introduction to key concepts in electric power engineering for both entry-level and seasoned professionals. Table of Contents: 1. Energy Sources and Electric Power; 2. Magnetic Fields and Magnetic Circuits; 3. The Power Transformer; 4. Synchronous Machines; 5. D.C. Machines; 6. Induction Machines; 7. The Electric Power System Network; Appendix: Complex Numbers, Phasors, Impedances, and Polyphase Circuits. 200 illustrations.
This book is about electric energy: its generation, its transmission from the point of generation to where it is required, and its transformation into required forms. To achieve this end, a number of devices are essential-such as generators, trans mission lines, transformers, and electric motors. We discuss the design, construc tion, and operating characteristics of the electric devices used in the transformation to and from electric energy. This text is designed to be used in a one-semester course in electric energy con version at the second-year level of the Bachelor of Engineering course. It is assumed that the student is familiar with the laws of thermodynamics and has taken a course in basic circuit analysis, including the application of phasors. We begin with a discussion of how humankind has successfully harnessed the energy of wind, water, the sun, biomass, animals, geothermal sources, fossils, and nuclear fission to make its life comfortable. Some of the consequences of this activity on the environment are examined. In Chapter 2, we review the basic physics of energy and its conversion. This may be, to some extent, a repetition of knowledge gained in high-school and first year university courses. However, we believe that such review is necessary to establish a suitable base from which to launch the subject of electric energy con version.
Featuring contributions from worldwide leaders in the field, the carefully crafted Electric Power Generation, Transmission, and Distribution, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) provides convenient access to detailed information on a diverse array of power engineering topics. Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. Topics covered include: Electric power generation: nonconventional methods Electric power generation: conventional methods Transmission system Distribution systems Electric power utilization Power quality L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Saifur Rahman, Rama Ramakumar, George Karady, Bill Kersting, Andrew Hanson, and Mark Halpin present substantially new and revised material, giving readers up-to-date information on core areas. These include advanced energy technologies, distributed utilities, load characterization and modeling, and power quality issues such as power system harmonics, voltage sags, and power quality monitoring. With six new and 16 fully revised chapters, the book supplies a high level of detail and, more importantly, a tutorial style of writing and use of photographs and graphics to help the reader understand the material. New chapters cover: Water Transmission Line Reliability Methods High Voltage Direct Current Transmission System Advanced Technology High-Temperature Conduction Distribution Short-Circuit Protection Linear Electric Motors A volume in the Electric Power Engineering Handbook, Third Edition. Other volumes in the set: K12648 Power Systems, Third Edition (ISBN: 9781439856338) K13917 Power System Stability and Control, Third Edition (ISBN: 9781439883204) K12650 Electric Power Substations Engineering, Third Edition (ISBN: 9781439856383) K12643 Electric Power Transformer Engineering, Third Edition (ISBN: 9781439856291)
Electric Energy Systems, Second Edition provides an analysis of electric generation and transmission systems that addresses diverse regulatory issues. It includes fundamental background topics, such as load flow, short circuit analysis, and economic dispatch, as well as advanced topics, such as harmonic load flow, state estimation, voltage and frequency control, electromagnetic transients, etc. The new edition features updated material throughout the text and new sections throughout the chapters. It covers current issues in the industry, including renewable generation with associated control and scheduling problems, HVDC transmission, and use of synchrophasors (PMUs). The text explores more sophisticated protections and the new roles of demand, side management, etc. Written by internationally recognized specialists, the text contains a wide range of worked out examples along with numerous exercises and solutions to enhance understanding of the material. Features Integrates technical and economic analyses of electric energy systems. Covers HVDC transmission. Addresses renewable generation and the associated control and scheduling problems. Analyzes electricity markets, electromagnetic transients, and harmonic load flow. Features new sections and updated material throughout the text. Includes examples and solved problems.
Vehicular Electric Power Systems: Land, Sea, Air, and Space Vehicles acquaints professionals with trends and challenges in the development of more electric vehicles (MEVs) using detailed examples and comprehensive discussions of advanced MEV power system architectures, characteristics, and dynamics. The authors focus on real-world applications and highlight issues related to system stability as well as challenges faced during and after implementation. Probes innovations in the development of more electric vehicles for improved maintenance, support, endurance, safety, and cost-efficiency in automotive, aerospace, and marine vehicle engineering Heralding a new wave of advances in power system technology, Vehicular Electric Power Systems discusses: Different automotive power systems including conventional automobiles, more electric cars, heavy-duty vehicles, and electric and hybrid electric vehicles Electric and hybrid electric propulsion systems and control strategies Aerospace power systems including conventional and advanced aircraft, spacecraft, and the international space station Sea and undersea vehicles The modeling, real-time state estimation, and stability assessment of vehicular power systems Applications of fuel cells in various land, sea, air, and space vehicles Modeling techniques for energy storage devices including batteries, fuel cells, photovoltaic cells, and ultracapacitors Advanced power electronic converters and electric motor drives for vehicular applications Guidelines for the proper design of DC and AC distribution architectures
The second edition of Steven W. Blume’s bestseller provides a comprehensive treatment of power technology for the non-electrical engineer working in the electric power industry This book aims to give non-electrical professionals a fundamental understanding of large interconnected electrical power systems, better known as the “Power Grid”, with regard to terminology, electrical concepts, design considerations, construction practices, industry standards, control room operations for both normal and emergency conditions, maintenance, consumption, telecommunications and safety. The text begins with an overview of the terminology and basic electrical concepts commonly used in the industry then it examines the generation, transmission and distribution of power. Other topics discussed include energy management, conservation of electrical energy, consumption characteristics and regulatory aspects to help readers understand modern electric power systems. This second edition features: New sections on renewable energy, regulatory changes, new measures to improve system reliability, and smart technologies used in the power grid system Updated practical examples, photographs, drawing, and illustrations to help the reader gain a better understanding of the material “Optional supplementary reading” sections within most chapters to elaborate on certain concepts by providing additional detail or background Electric Power System Basics for the Nonelectrical Professional, Second Edition, gives business professionals in the industry and entry-level engineers a strong introduction to power technology in non-technical terms. Steve W. Blume is Founder of Applied Professional Training, Inc., APT Global, LLC, APT College, LLC and APT Corporate Training Services, LLC, USA. Steve is a registered professional engineer and certified NERC Reliability Coordinator with a Master's degree in Electrical Engineering specializing in power and a Bachelor's degree specializing in Telecommunications. He has more than 25 years’ experience teaching electric power system basics to non-electrical professionals. Steve's engineering and operations experience includes generation, transmission, distribution, and electrical safety. He is an active senior member in IEEE and has published two books in power systems through IEEE and Wiley.
Traditionally, power engineering has been a subfield of energy engineering and electrical engineering which deals with the generation, transmission, distribution and utilization of electric power and the electrical devices connected to such systems including generators, motors and transformers. Implicitly this perception is associated with the generation of power in large hydraulic, thermal and nuclear plants and distributed consumption. Faced with the climate change phenomena, humanity has had to now contend with changes in attitudes in respect of environment protection and depletion of classical energy resources. These have had consequences in the power production sector, already faced with negative public opinions on nuclear energy and favorable perception of renewable energy resources and about distributed power generation. The objective of this edited book is to review all these changes and to present solutions for future power generation. Future energy systems must factor in the changes and developments in technology like improvements of natural gas combined cycles and clean coal technologies, carbon dioxide capture and storage, advancements in nuclear reactors and hydropower, renewable energy engineering, power-to-gas conversion and fuel cells, energy crops, new energy vectors biomass-hydrogen, thermal energy storage, new storage systems diffusion, modern substations, high voltage engineering equipment and compatibility, HVDC transmission with FACTS, advanced optimization in a liberalized market environment, active grids and smart grids, power system resilience, power quality and cost of supply, plug-in electric vehicles, smart metering, control and communication technologies, new key actors as prosumers, smart cities. The emerging research will enhance the security of energy systems, safety in operation, protection of environment, improve energy efficiency, reliability and sustainability. The book reviews current literature in the advances, innovative options and solutions in power engineering. It has been written for researchers, engineers, technicians and graduate and doctorate students interested in power engineering.
The second edition of a bestseller, this definitive text covers all aspects of testing and maintenance of the equipment found in electrical power systems serving industrial, commercial, utility substations, and generating plants. It addresses practical aspects of routing testing and maintenance and presents both the methodologies and engineering basics needed to carry out these tasks. It is an essential reference for engineers and technicians responsible for the operation, maintenance, and testing of power system equipment. Comprehensive coverage includes dielectric theory, dissolved gas analysis, cable fault locating, ground resistance measurements, and power factor, dissipation factor, DC, breaker, and relay testing methods.