Ecohydrologic Impacts of Climate and Land Use Changes on Watershed Systems

Ecohydrologic Impacts of Climate and Land Use Changes on Watershed Systems

Author: Paul A. Ekness

Publisher:

Published: 2013

Total Pages: 382

ISBN-13:

DOWNLOAD EBOOK

Maintaining flows and quality of water resources is critical to support ecosystem services and consumptive needs. Understanding impacts of changes in climate and land use on ecohydrologic processes in a watershed is vital to sustaining water resources for multiple uses. This study completes a continental and regional scale assessment using statistical and simulation modeling to investigate ecohydrologic impacts within watershed systems. Watersheds across the continental United States have diverse hydrogeomorphic characters, mean temperatures, soil moistures, precipitation and evaporation patterns that influence runoff processes. Changes in climate affect runoff by impacting available soil moisture, evaporation, precipitation and vegetative patterns. A one percent increase in annual soil moisture may cause a five percent increase in runoff in watersheds across the continent. Low soil moisture and high temperatures influence runoff patterns in specific regions. Spring runoff is increased by the influence Spring soil moisture, Winter and Spring evaporation, and Winter and Spring evaporation. Spring runoff is decreased by increases in Winter and Spring temperatures and increases in the vegetation index. Winter runoff is affected by maximum vegetative index, temperature, soil moisture, evaporation and precipitation. Contributing factors to runoff are influenced by geomorphic and seasonal variations requiring strategies that are site-specific and use system-wide information. Regional scale watershed analysis investigates the influence of landscape metrics on temporal streamflow processes in multiple gauged watersheds in Massachusetts, U.S.A. Time of concentration, recession coefficient, base flow index, and peak flow are hydrologic metrics used to relate to landscape metrics derived using FRAGSTAT software. Peak flow increases with increasing perimeter-area fractal dimensions, and Contagion index and decreases as Landscape Shape Index increases. There was an increasing trend in the fractal dimension over time indicative of more complex shape of patches in watershed. Base flow index and recession coefficient fluctuated from low to high decreasing recently. This could be indicative of open space legislation, conservation efforts and reforestation within the state in the last ten years. Coastal systems provide valuable ecosystem services and are vulnerable to impacts of changes in climate and continental land use patterns. Effects of land use and climate change on runoff, suspended sediments, total nitrogen and total phosphorus are simulated for coastal watersheds around the Boston Bay ecosystem. The SWAT (Soil and Water Assessment Tool) model, a continuous-time, semi distributed, process-based model, is used to simulate the watershed ecohydrologic process affecting coastal bodies. Urbanization in watersheds increased runoff by as much as 80% from the baseline. Land use change poses a major threat to water quality impacts affecting coastal ecosystems. Total nitrogen increased average of 53.8% with conservative changes in climate and land use. Total phosphorus increased an average of 57.3% with conservative changes in land use and climate change. Climate change alone causes up to 40% increase in runoff and when combined with a 3.25% increase in urban development runoff increased an average of 114%. Coastal ecosystems are impacted by nutrient runoff from watersheds. Continued urbanization and changes in climate will increase total nitrogen, total phosphorus and suspended sediments in coastal ecosystems. Continental scale runoff is affected by soil moisture and vegetative cover. Cover crops, low tillage farm practices and natural vegetation contribute to less runoff. Developing policies that encourage protection of soil structure could minimize runoff and aid in maintaining sustainable water resources. Best Management Practices and Low impact development at the national level with continued stormwater legislation directed towards sustainable land use policy will improve water quantity and quality. Fragmentation observed in Massachusetts increases the number of urban parcels and decreases the size of forested areas. Faster runoff patterns are observed but recent land management may be changing this runoff pattern. Municipal and state zoning ordinance to preserve open space and large forest patches will restrict urban growth to specific regions of a watershed. This could improve quantities of water available to ecosystems. Increases in total nitrogen, phosphorus and suspended sediments to coastal ecosystems can be minimized with use of riparian buffers and Best Management Practices within coastal watersheds. Urbanization and climate change threatens coastal ecosystems and national policy to preserve and restrict development of coastal areas will preserve coastal ecosystem services.


Hydrology and the Management of Watersheds

Hydrology and the Management of Watersheds

Author: Kenneth N. Brooks

Publisher: John Wiley & Sons

Published: 2012-10-01

Total Pages: 562

ISBN-13: 1118459741

DOWNLOAD EBOOK

This new edition is a major revision of the popular introductory reference on hydrology and watershed management principles, methods, and applications. The book's content and scope have been improved and condensed, with updated chapters on the management of forest, woodland, rangeland, agricultural urban, and mixed land use watersheds. Case studies and examples throughout the book show practical ways to use web sites and the Internet to acquire data, update methods and models, and apply the latest technologies to issues of land and water use and climate variability and change.


Impacts of Anthropogenic Activities on Watersheds in a Changing Climate

Impacts of Anthropogenic Activities on Watersheds in a Changing Climate

Author: Luís Filipe Sanches Fernandes

Publisher: MDPI

Published: 2021-04-14

Total Pages: 256

ISBN-13: 3036502661

DOWNLOAD EBOOK

The immediate goal of this Special Issue was the characterization of land uses and occupations (LULC) in watersheds and the assessment of impacts caused by anthropogenic activities. The goal was immediate because the ultimate purpose was to help bring disturbed watersheds to a better condition or a utopian sustainable status. The steps followed to attain this objective included publishing studies on the understanding of factors and variables that control hydrology and water quality changes in response to human activities. Following this first step, the Special Issue selected work that described adaption measures capable of improving the watershed condition (water availability and quality), namely LULC conversions (e.g., monocultures into agro-forestry systems). Concerning the LULC measures, however, efficacy was questioned unless supported by public programs that force consumers to participate in concomitant costs, because conversions may be viewed as an environmental service.


Climate Change and Land Use/Cover Change Impacts on Watershed Hydrology, Nutrient Dynamics -- a Case Study in Missisquoi River Watershed

Climate Change and Land Use/Cover Change Impacts on Watershed Hydrology, Nutrient Dynamics -- a Case Study in Missisquoi River Watershed

Author: Linyuan Shang

Publisher:

Published: 2019

Total Pages: 318

ISBN-13:

DOWNLOAD EBOOK

Watershed regulation of water, carbon and nutrient dynamics support food, drinking water and human development. Projected climate changes and land use/cover change (LUCC) have been identified as drivers of watershed nutrient and hydrological processes and are likely to happen jointly in the future decades. Studying climate change and LUCC impacts on watersheds' streamflow and nutrients dynamics is therefore essential for future watershed management. This research aimed to unveil how climate change and LUCC affect water and nutrient dynamics in the Missisquoi River watershed, Vermont. We used 12 scenarios of future climate data (2021 - 2050) generated by three GCMs (ccsm4, mri-cgcm3, and gfdl-esm2m) under four Representative Concentration Pathways (RCPs). For LUCC, we used three different scenarios generated by the Interactive Land Use Transition Agent-Based Model (ILUTABM). The three LUCC scenarios were Business As Usual (BAU), Prefer Forest (proForest), and Prefer Agriculture (proAg). New land use maps were generated every 10 years for the period of 2021 - 2050. Combining each climate change and LUCC scenario resulted in 36 scenarios that were used to drive Regional Hydro-Ecologic Simulation System (RHESSys) ecohydrological model. In chapter 3, we used RHESSys to study streamflow. We found climate was the main driver for streamflow because climate change directly controlled the system water input. For streamflow, climate change scenarios had larger impacts than LUCC, different LUCCs under the same climate change scenario had similar annual flow patterns. In chapter 4, we used RHESSys to study streamflow NO3-N and NH4-N load. Because fertilizer application is the major source for nitrogen export, LUCC had larger impacts; watersheds with more agricultural land had larger nitrogen loads. In chapter 5, we developed RHESSys-P by coupling the DayCent phosphorus module with RHESSys to study climate change and LUCC impacts on Dissolved Phosphorus (DP) load. RHESSys-P was calibrated with observed DP data for 2002 - 2004 and validated with data for 2009 - 2010. In both calibration and validation periods, simulated DP basically captured patterns of observed DP. In the validation period, the R2 of simulated vs observed DP was 0.788. Future projection results indicated BAU and proForest annual loads were around 4.0 x 104 kg under all climate change scenarios; proAg annual loads increased from around 4.0 x 104 kg in 2021 to 1.6 x 105 kg in 2050 under all climate change scenarios. The results showed LUCC was the dominant factor for dissolved phosphorus loading. Overall, our results suggest that, while climate drives streamflow, N and P fluxes are largely driven by land use and management decisions. To balance human development and environmental quality, BAU is a feasible future development strategy.


Water and Land Security in Drylands

Water and Land Security in Drylands

Author: Mohamed Ouessar

Publisher: Springer

Published: 2017-04-25

Total Pages: 352

ISBN-13: 3319540211

DOWNLOAD EBOOK

This book presents recent lessons learned in the context of research and development for various dryland ecosystems, focusing on water resources management, land and vegetation cover degradation and remediation, and socioeconomic aspects, as well as integrated approaches to ensuring water and land security in view of the current and predicted climate change. As water and land are the essential bases of food production, the management of these natural resources is becoming a cornerstone for the development of dryland populations. The book gathers the peer-reviewed, revised versions of the most outstanding papers on these topics presented at the ILDAC2015 Conference in Djerba, Tunisia.


Global Deforestation

Global Deforestation

Author: Christiane Runyan

Publisher: Cambridge University Press

Published: 2016-04-18

Total Pages: 277

ISBN-13: 1316654222

DOWNLOAD EBOOK

Global Deforestation provides a concise but comprehensive examination of the variety of ways in which deforestation modifies environmental processes, as well as the societal implications of these changes. The book stresses how forest ecosystems may be prone to nearly irreversible degradation. To prevent the loss of important biophysical and socioeconomic functions, forests need to be adequately managed and protected against the increasing demand for agricultural land and forest resources. The book describes the spatial extent of forests, and provides an understanding of the past and present drivers of deforestation. It presents a theoretical background to understand the impacts of deforestation on biodiversity, hydrological functioning, biogeochemical cycling, and climate. It bridges the physical and biological sciences with the social sciences by examining economic impacts and socioeconomic drivers of deforestation. This book will appeal to advanced students, researchers and policymakers in environmental science, ecology, forestry, hydrology, plant science, ecohydrology, and environmental economics.


Science of Ecosystem-based Management

Science of Ecosystem-based Management

Author: Alan Desbonnet

Publisher: Springer Series on Environmental Management

Published: 2008-02

Total Pages: 600

ISBN-13:

DOWNLOAD EBOOK

In the U.S., approximately two-thirds of the coastal rivers and bays are moderately to severely degraded from nutrient pollution. The contributors to this book use long-term data sets to discuss the interactions among biological, ecological, chemical, and physical processes, and discuss what is known about nutrient inputs to the bay ecosystem, the impacts related to nutrient inputs, and how the ecosystem might respond to a sudden reduction in these inputs.


Hydro-Environmental Impact of Climate and Land Use Change on Watersheds for Sustainable Development

Hydro-Environmental Impact of Climate and Land Use Change on Watersheds for Sustainable Development

Author: T. I. Eldho

Publisher:

Published: 2024-07

Total Pages: 0

ISBN-13: 9781036404604

DOWNLOAD EBOOK

This book includes the most up-to-date research findings on the topics of climate change impact assessment, land use change impact assessment, mathematical modelling, and field applications presented as case studies in the water resources engineering discipline. The book covers various aspects of hydrological and environmental processes; provides a comprehensive treatment of climate change and land use changes and their impacts, illustrated with case studies; and demonstrates recent modelling techniques for hydrological and environmental impact studies. The book may serve graduate students, engineers, professors, and researchers in providing a concise overview of climate and land use change and its impacts on hydrology, water resources, and the environment.


Water, Climate Change, and Forests

Water, Climate Change, and Forests

Author: Michael J. Furniss

Publisher: DIANE Publishing

Published: 2011

Total Pages: 80

ISBN-13: 1437939848

DOWNLOAD EBOOK

This is a print on demand edition of a hard to find publication. Water from forested watersheds provides irreplaceable habitat for aquatic and riparian species and supports our homes, farms, industries, and energy production. Yet population pressures, land uses, and rapid climate change combine to seriously threaten these waters and the resilience of watersheds in most places. Forest land managers are expected to anticipate and respond to these threats and steward forested watersheds to ensure the sustained protection and provision of water and the services it provides. Contents of this report: (1) Intro.; (2) Background: Forests and Water; Climate Change: Hydrologic Responses and Ecosystem Services; (3) Moving Forward: Think; Collaborate; Act; (4) Closing; (5) Examples of Watershed Stewardship. Illus.


Impacts of Landscape Change on Water Resources

Impacts of Landscape Change on Water Resources

Author: Manoj K. Jha

Publisher: MDPI

Published: 2020-11-13

Total Pages: 180

ISBN-13: 3039434268

DOWNLOAD EBOOK

Changes in land use and land cover can have many drivers, including population growth, urbanization, agriculture, demand for food, evolution of socio-economic structure, policy regulations, and climate variability. The impacts of these changes on water resources range from changes in water availability (due to changes in losses of water to evapotranspiration and recharge) to degradation of water quality (increased erosion, salinity, chemical loadings, and pathogens). The impacts are manifested through complex hydro-bio-geo-climate characteristics, which underscore the need for integrated scientific approaches to understand the impacts of landscape change on water resources. Several techniques, such as field studies, long-term monitoring, remote sensing technologies, and advanced modeling studies, have contributed to better understanding the modes and mechanisms by which landscape changes impact water resources. Such research studies can help unlock the complex interconnected influences of landscape on water resources in terms of quantity and quality at multiple spatial and temporal scales. In this Special Issue, we published a set of eight peer-reviewed articles elaborating on some of the specific topics of landscape changes and associated impacts on water resources.