Dynamics: Topology and Numbers

Dynamics: Topology and Numbers

Author: Pieter Moree

Publisher: American Mathematical Soc.

Published: 2020-02-12

Total Pages: 360

ISBN-13: 147045100X

DOWNLOAD EBOOK

This volume contains the proceedings of the conference Dynamics: Topology and Numbers, held from July 2–6, 2018, at the Max Planck Institute for Mathematics, Bonn, Germany. The papers cover diverse fields of mathematics with a unifying theme of relation to dynamical systems. These include arithmetic geometry, flat geometry, complex dynamics, graph theory, relations to number theory, and topological dynamics. The volume is dedicated to the memory of Sergiy Kolyada and also contains some personal accounts of his life and mathematics.


Elements of Topological Dynamics

Elements of Topological Dynamics

Author: J. de Vries

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 762

ISBN-13: 9401581711

DOWNLOAD EBOOK

This book is designed as an introduction into what I call 'abstract' Topological Dynamics (TO): the study of topological transformation groups with respect to problems that can be traced back to the qualitative theory of differential equa is in the tradition of the books [GH] and [EW. The title tions. So this book (,Elements . . . ' rather than 'Introduction . . . ') does not mean that this book should be compared, either in scope or in (intended) impact, with the 'Ele ments' of Euclid or Bourbaki. Instead, it reflects the choice and organisation of the material in this book: elementary and basic (but sufficient to understand recent research papers in this field). There are still many challenging prob lems waiting for a solution, and especially among general topologists there is a growing interest in this direction. However, the technical inaccessability of many research papers makes it almost impossible for an outsider to under stand what is going on. To a large extent, this inaccessability is caused by the lack of a good and systematic exposition of the fundamental methods and techniques of abstract TO. This book is an attempt to fill this gap. The guiding principle for the organization of the material in this book has been the exposition of methods and techniques rather than a discussion of the leading problems and their solutions. though the latter are certainly not neglected: they are used as a motivation wherever possible.


Dynamics, Geometry, Number Theory

Dynamics, Geometry, Number Theory

Author: David Fisher

Publisher: University of Chicago Press

Published: 2022-02-07

Total Pages: 573

ISBN-13: 022680402X

DOWNLOAD EBOOK

"Mathematicians David Fisher, Dmitry Kleinbock, and Gregory Soifer highlight in this edited collection the foundations and evolution of research by mathematician Gregory Margulis. Margulis is unusual in the degree to which his solutions to particular problems have opened new vistas of mathematics. Margulis' ideas were central, for example, to developments that led to the recent Fields Medals of Elon Lindenstrauss and Maryam Mirzhakhani. The broad goal of this volume is to introduce these areas, their development, their use in current research, and the connections between them. The foremost experts on the topic have written each of the chapters in this volume with a view to making them accessible by graduate students and by experts in other parts of mathematics"--


Recurrence in Topological Dynamics

Recurrence in Topological Dynamics

Author: Ethan Akin

Publisher: Springer Science & Business Media

Published: 1997-07-31

Total Pages: 292

ISBN-13: 9780306455506

DOWNLOAD EBOOK

This groundbreaking volume is the first to elaborate the theory of set families as a tool for studying the phenomenon of recurrence. The theory is implicit in such seminal works as Hillel Furstenberg's Recurrence in Ergodic Theory and Combinational Number Theory, but Ethan Akin's study elaborates it in detail, defining such elements of theory as: open families of special subsets the unification of several ideas associated with transitivity, ergodicity, and mixing the Ellis theory of enveloping semigroups for compact dynamical systems and new notions of equicontinuity, distality, and rigidity.


Dynamic Topology

Dynamic Topology

Author: G. Whyburn

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 163

ISBN-13: 1468462628

DOWNLOAD EBOOK

It is a privilege for me to write a foreword for this unusual book. The book is not primarily a reference work although many of the ideas and proofs are explained more clearly here than in any other source that I know. Nor is this a text of the customary sort. It is rather a record of a particular course and Gordon Whyburn's special method of teaching it. Perhaps the easiest way to describe the course and the method is to relate my own personal experience with a forerunner of this same course in the academic year 1937-1938. At that time, the course was offered every other year with a following course in algebraic topology on alternate years. There were five of us enrolled, and on the average we knew less mathematics than is now routinely given in a junior course in analysis. Whyburn's purpose, as we learned, was to prepare us in minimal time for research in the areas in which he was inter ested. His method was remarkable.


Number Theory and Dynamical Systems

Number Theory and Dynamical Systems

Author: M. M. Dodson

Publisher: Cambridge University Press

Published: 1989-11-09

Total Pages: 185

ISBN-13: 0521369193

DOWNLOAD EBOOK

This volume contains selected contributions from a very successful meeting on Number Theory and Dynamical Systems held at the University of York in 1987. There are close and surprising connections between number theory and dynamical systems. One emerged last century from the study of the stability of the solar system where problems of small divisors associated with the near resonance of planetary frequencies arose. Previously the question of the stability of the solar system was answered in more general terms by the celebrated KAM theorem, in which the relationship between near resonance (and so Diophantine approximation) and stability is of central importance. Other examples of the connections involve the work of Szemeredi and Furstenberg, and Sprindzuk. As well as containing results on the relationship between number theory and dynamical systems, the book also includes some more speculative and exploratory work which should stimulate interest in different approaches to old problems.


Differential Geometry and Topology

Differential Geometry and Topology

Author: Keith Burns

Publisher: CRC Press

Published: 2005-05-27

Total Pages: 408

ISBN-13: 9781584882534

DOWNLOAD EBOOK

Accessible, concise, and self-contained, this book offers an outstanding introduction to three related subjects: differential geometry, differential topology, and dynamical systems. Topics of special interest addressed in the book include Brouwer's fixed point theorem, Morse Theory, and the geodesic flow. Smooth manifolds, Riemannian metrics, affine connections, the curvature tensor, differential forms, and integration on manifolds provide the foundation for many applications in dynamical systems and mechanics. The authors also discuss the Gauss-Bonnet theorem and its implications in non-Euclidean geometry models. The differential topology aspect of the book centers on classical, transversality theory, Sard's theorem, intersection theory, and fixed-point theorems. The construction of the de Rham cohomology builds further arguments for the strong connection between the differential structure and the topological structure. It also furnishes some of the tools necessary for a complete understanding of the Morse theory. These discussions are followed by an introduction to the theory of hyperbolic systems, with emphasis on the quintessential role of the geodesic flow. The integration of geometric theory, topological theory, and concrete applications to dynamical systems set this book apart. With clean, clear prose and effective examples, the authors' intuitive approach creates a treatment that is comprehensible to relative beginners, yet rigorous enough for those with more background and experience in the field.


Introduction to the Modern Theory of Dynamical Systems

Introduction to the Modern Theory of Dynamical Systems

Author: Anatole Katok

Publisher: Cambridge University Press

Published: 1995

Total Pages: 828

ISBN-13: 9780521575577

DOWNLOAD EBOOK

This book provided the first self-contained comprehensive exposition of the theory of dynamical systems as a core mathematical discipline closely intertwined with most of the main areas of mathematics. The authors introduce and rigorously develop the theory while providing researchers interested in applications with fundamental tools and paradigms. The book begins with a discussion of several elementary but fundamental examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. Over 400 systematic exercises are included in the text. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate up.


Topology And Dynamics Of Chaos: In Celebration Of Robert Gilmore's 70th Birthday

Topology And Dynamics Of Chaos: In Celebration Of Robert Gilmore's 70th Birthday

Author: Christophe Letellier

Publisher: World Scientific

Published: 2013-01-11

Total Pages: 362

ISBN-13: 9814434876

DOWNLOAD EBOOK

The book surveys how chaotic behaviors can be described with topological tools and how this approach occurred in chaos theory. Some modern applications are included.The contents are mainly devoted to topology, the main field of Robert Gilmore's works in dynamical systems. They include a review on the topological analysis of chaotic dynamics, works done in the past as well as the very latest issues. Most of the contributors who published during the 90's, including the very well-known scientists Otto Rössler, René Lozi and Joan Birman, have made a significant impact on chaos theory, discrete chaos, and knot theory, respectively.Very few books cover the topological approach for investigating nonlinear dynamical systems. The present book will provide not only some historical — not necessarily widely known — contributions (about the different types of chaos introduced by Rössler and not just the “Rössler attractor”; Gumowski and Mira's contributions in electronics; Poincaré's heritage in nonlinear dynamics) but also some recent applications in laser dynamics, biology, etc.


Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics

Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics

Author: Marco Pettini

Publisher: Springer Science & Business Media

Published: 2007-06-14

Total Pages: 460

ISBN-13: 0387499571

DOWNLOAD EBOOK

This book covers a new explanation of the origin of Hamiltonian chaos and its quantitative characterization. The author focuses on two main areas: Riemannian formulation of Hamiltonian dynamics, providing an original viewpoint about the relationship between geodesic instability and curvature properties of the mechanical manifolds; and a topological theory of thermodynamic phase transitions, relating topology changes of microscopic configuration space with the generation of singularities of thermodynamic observables. The book contains numerous illustrations throughout and it will interest both mathematicians and physicists.