Dynamics Of Rigid Bodies

Dynamics Of Rigid Bodies

Author: A. K. Sharma

Publisher: Discovery Publishing House

Published: 2007

Total Pages: 332

ISBN-13: 9788183562348

DOWNLOAD EBOOK

The relationship between the growth in world population and the grain harvest has shifted over the last half-century, neatly dividing this period into two distinct eras. From 1950 to 1984, growth and the grain harvest easily exceeded that of population, raising the harvest per person from 247 kilograms to 342, a gain of 38 per cent. During the 14 years since then, growth in the grain harvest has fallen behind that of population, dropping output per person from its historic high in 1984 to an estimated. 317 kilograms in 1998-a decline of 7 per cent, or 0.5 per cent a year.


Rigid Body Dynamics Algorithms

Rigid Body Dynamics Algorithms

Author: Roy Featherstone

Publisher: Springer

Published: 2014-11-10

Total Pages: 276

ISBN-13: 1489975608

DOWNLOAD EBOOK

Rigid Body Dynamics Algorithms presents the subject of computational rigid-body dynamics through the medium of spatial 6D vector notation. It explains how to model a rigid-body system and how to analyze it, and it presents the most comprehensive collection of the best rigid-body dynamics algorithms to be found in a single source. The use of spatial vector notation greatly reduces the volume of algebra which allows systems to be described using fewer equations and fewer quantities. It also allows problems to be solved in fewer steps, and solutions to be expressed more succinctly. In addition algorithms are explained simply and clearly, and are expressed in a compact form. The use of spatial vector notation facilitates the implementation of dynamics algorithms on a computer: shorter, simpler code that is easier to write, understand and debug, with no loss of efficiency.


A Concise Introduction to Mechanics of Rigid Bodies

A Concise Introduction to Mechanics of Rigid Bodies

Author: L. Huang

Publisher: Springer

Published: 2016-11-26

Total Pages: 197

ISBN-13: 3319450417

DOWNLOAD EBOOK

This updated second edition broadens the explanation of rotational kinematics and dynamics — the most important aspect of rigid body motion in three-dimensional space and a topic of much greater complexity than linear motion. It expands treatment of vector and matrix, and includes quaternion operations to describe and analyze rigid body motion which are found in robot control, trajectory planning, 3D vision system calibration, and hand-eye coordination of robots in assembly work, etc. It features updated treatments of concepts in all chapters and case studies. The textbook retains its comprehensiveness in coverage and compactness in size, which make it easily accessible to the readers from multidisciplinary areas who want to grasp the key concepts of rigid body mechanics which are usually scattered in multiple volumes of traditional textbooks. Theoretical concepts are explained through examples taken from across engineering disciplines and links to applications and more advanced courses (e.g. industrial robotics) are provided. Ideal for students and practitioners, this book provides readers with a clear path to understanding rigid body mechanics and its significance in numerous sub-fields of mechanical engineering and related areas.


Dynamics of Particles and Rigid Bodies

Dynamics of Particles and Rigid Bodies

Author: Anil Rao

Publisher: Cambridge University Press

Published: 2006

Total Pages: 534

ISBN-13: 9780521858113

DOWNLOAD EBOOK

This 2006 work is intended for students who want a rigorous, systematic, introduction to engineering dynamics.


Rigid Body Dynamics of Mechanisms

Rigid Body Dynamics of Mechanisms

Author: Hubert Hahn

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 345

ISBN-13: 3662048310

DOWNLOAD EBOOK

This monograph presents an introduction into basic mechanical aspects of mechatronic systems for students, researchers and engineers from industrial practice. An overview over the theoretical background of rigid body mechanics is given as well as a systematic approach for deriving and solving model equations of general rigid body mechanisms in the form of differential-algebraic equations (DAE). The objective of this book is to prepare the reader for being capable of efficiently handling and applying general purpose rigid body programs to complex mechanisms. The reader will be able to set up symbolic mathematical models of planar and spatial mechanisms in DAE-form for computer simulations, often required in dynamic analysis and in control design.


Rigid Body Mechanics

Rigid Body Mechanics

Author: William B. Heard

Publisher: John Wiley & Sons

Published: 2008-07-11

Total Pages: 262

ISBN-13: 3527618821

DOWNLOAD EBOOK

This textbook is a modern, concise and focused treatment of the mathematical techniques, physical theories and applications of rigid body mechanics, bridging the gap between the geometric and more classical approaches to the topic. It emphasizes the fundamentals of the subject, stresses the importance of notation, integrates the modern geometric view of mechanics and offers a wide variety of examples -- ranging from molecular dynamics to mechanics of robots and planetary rotational dynamics. The author has unified his presentation such that applied mathematicians, mechanical and astro-aerodynamical engineers, physicists, computer scientists and astronomers can all meet the subject on common ground, despite their diverse applications. * Free solutions manual available for lecturers at www.wiley-vch.de/supplements/


3D Motion of Rigid Bodies

3D Motion of Rigid Bodies

Author: Ernesto Olguín Díaz

Publisher: Springer

Published: 2018-12-06

Total Pages: 488

ISBN-13: 3030042758

DOWNLOAD EBOOK

This book offers an excellent complementary text for an advanced course on the modelling and dynamic analysis of multi-body mechanical systems, and provides readers an in-depth understanding of the modelling and control of robots. While the Lagrangian formulation is well suited to multi-body systems, its physical meaning becomes paradoxically complicated for single rigid bodies. Yet the most advanced numerical methods rely on the physics of these single rigid bodies, whose dynamic is then given among multiple formulations by the set of the Newton–Euler equations in any of their multiple expression forms. This book presents a range of simple tools to express in succinct form the dynamic equation for the motion of a single rigid body, either free motion (6-dimension), such as that of any free space navigation robot or constrained motion (less than 6-dimension), such as that of ground or surface vehicles. In the process, the book also explains the equivalences of (and differences between) the different formulations.


Advanced Dynamics

Advanced Dynamics

Author: Reza N. Jazar

Publisher: John Wiley & Sons

Published: 2011-02-23

Total Pages: 1346

ISBN-13: 0470892137

DOWNLOAD EBOOK

A thorough understanding of rigid body dynamics as it relates to modern mechanical and aerospace systems requires engineers to be well versed in a variety of disciplines. This book offers an all-encompassing view by interconnecting a multitude of key areas in the study of rigid body dynamics, including classical mechanics, spacecraft dynamics, and multibody dynamics. In a clear, straightforward style ideal for learners at any level, Advanced Dynamics builds a solid fundamental base by first providing an in-depth review of kinematics and basic dynamics before ultimately moving forward to tackle advanced subject areas such as rigid body and Lagrangian dynamics. In addition, Advanced Dynamics: Is the only book that bridges the gap between rigid body, multibody, and spacecraft dynamics for graduate students and specialists in mechanical and aerospace engineering Contains coverage of special applications that highlight the different aspects of dynamics and enhances understanding of advanced systems across all related disciplines Presents material using the author's own theory of differentiation in different coordinate frames, which allows for better understanding and application by students and professionals Both a refresher and a professional resource, Advanced Dynamics leads readers on a rewarding educational journey that will allow them to expand the scope of their engineering acumen as they apply a wide range of applications across many different engineering disciplines.


Rigid Body Dynamics

Rigid Body Dynamics

Author: Alexey Borisov

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-12-03

Total Pages: 530

ISBN-13: 311054444X

DOWNLOAD EBOOK

This book provides an up-to-date overview of results in rigid body dynamics, including material concerned with the analysis of nonintegrability and chaotic behavior in various related problems. The wealth of topics covered makes it a practical reference for researchers and graduate students in mathematics, physics and mechanics. Contents Rigid Body Equations of Motion and Their Integration The Euler – Poisson Equations and Their Generalizations The Kirchhoff Equations and Related Problems of Rigid Body Dynamics Linear Integrals and Reduction Generalizations of Integrability Cases. Explicit Integration Periodic Solutions, Nonintegrability, and Transition to Chaos Appendix A : Derivation of the Kirchhoff, Poincaré – Zhukovskii, and Four-Dimensional Top Equations Appendix B: The Lie Algebra e(4) and Its Orbits Appendix C: Quaternion Equations and L-A Pair for the Generalized Goryachev – Chaplygin Top Appendix D: The Hess Case and Quantization of the Rotation Number Appendix E: Ferromagnetic Dynamics in a Magnetic Field Appendix F: The Landau – Lifshitz Equation, Discrete Systems, and the Neumann Problem Appendix G: Dynamics of Tops and Material Points on Spheres and Ellipsoids Appendix H: On the Motion of a Heavy Rigid Body in an Ideal Fluid with Circulation Appendix I: The Hamiltonian Dynamics of Self-gravitating Fluid and Gas Ellipsoids


Dynamics of Particles and Rigid Bodies

Dynamics of Particles and Rigid Bodies

Author: Mohammed F. Daqaq

Publisher: John Wiley & Sons

Published: 2018-10-08

Total Pages: 382

ISBN-13: 1119463149

DOWNLOAD EBOOK

A unique approach to teaching particle and rigid body dynamics using solved illustrative examples and exercises to encourage self-learning The study of particle and rigid body dynamics is a fundamental part of curricula for students pursuing graduate degrees in areas involving dynamics and control of systems. These include physics, robotics, nonlinear dynamics, aerospace, celestial mechanics and automotive engineering, among others. While the field of particle and rigid body dynamics has not evolved significantly over the past seven decades, neither have approaches to teaching this complex subject. This book fills the void in the academic literature by providing a uniquely stimulating, “flipped classroom” approach to teaching particle and rigid body dynamics which was developed, tested and refined by the author and his colleagues over the course of many years of instruction at both the graduate and undergraduate levels. Complete with numerous solved illustrative examples and exercises to encourage self-learning in a flipped-classroom environment, Dynamics of Particles and Rigid Bodies: A Self-Learning Approach: Provides detailed, easy-to-understand explanations of concepts and mathematical derivations Includes numerous flipped-classroom exercises carefully designed to help students comprehend the material covered without actually solving the problem for them Features an extensive chapter on electromechanical modelling of systems involving particle and rigid body motion Provides examples from the state-of-the-art research on sensing, actuation, and energy harvesting mechanisms Offers access to a companion website featuring additional exercises, worked problems, diagrams and a solutions manual Ideal as a textbook for classes in dynamics and controls courses, Dynamics of Particles and Rigid Bodies: A Self-Learning Approach is a godsend for students pursuing advanced engineering degrees who need to master this complex subject. It will also serve as a handy reference for professional engineers across an array of industrial domains.