Distributionally Robust Unsupervised Domain Adaptation and Its Applications in 2D and 3D Image Analysis

Distributionally Robust Unsupervised Domain Adaptation and Its Applications in 2D and 3D Image Analysis

Author: Yibin Wang

Publisher:

Published: 2023

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Obtaining ground-truth label information from real-world data along with uncertainty quantification can be challenging or even infeasible. In the absence of labeled data for a certain task, unsupervised domain adaptation (UDA) techniques have shown great accomplishment by learning transferable knowledge from labeled source domain data and adapting it to unlabeled target domain data, yet uncertainties are still a big concern under domain shifts. Distributionally robust learning (DRL) is emerging as a high-potential technique for building reliable learning systems that are robust to distribution shifts. In this research, a distributionally robust unsupervised domain adaptation (DRUDA) method is proposed to enhance the machine learning model generalization ability under input space perturbations. The DRL-based UDA learning scheme is formulated as a min-max optimization problem by optimizing worst-case perturbations of the training source data. Our Wasserstein distributionally robust framework can reduce the shifts in the joint distributions across domains. The proposed DRUDA method has been tested on various benchmark datasets. In addition, a gradient mapping-guided explainable network (GMGENet) is proposed to analyze 3D medical images for extracapsular extension (ECE) identification. DRUDA-enhanced GMGENet is evaluated, and experimental results demonstrate that the proposed DRUDA improves transfer performance on target domains for the 3D image analysis task successfully. This research enhances the understanding of distributionally robust optimization in domain adaptation and is expected to advance the current unsupervised machine learning techniques.


Domain Adaptation in Computer Vision with Deep Learning

Domain Adaptation in Computer Vision with Deep Learning

Author: Hemanth Venkateswara

Publisher: Springer Nature

Published: 2020-08-18

Total Pages: 256

ISBN-13: 3030455297

DOWNLOAD EBOOK

This book provides a survey of deep learning approaches to domain adaptation in computer vision. It gives the reader an overview of the state-of-the-art research in deep learning based domain adaptation. This book also discusses the various approaches to deep learning based domain adaptation in recent years. It outlines the importance of domain adaptation for the advancement of computer vision, consolidates the research in the area and provides the reader with promising directions for future research in domain adaptation. Divided into four parts, the first part of this book begins with an introduction to domain adaptation, which outlines the problem statement, the role of domain adaptation and the motivation for research in this area. It includes a chapter outlining pre-deep learning era domain adaptation techniques. The second part of this book highlights feature alignment based approaches to domain adaptation. The third part of this book outlines image alignment procedures for domain adaptation. The final section of this book presents novel directions for research in domain adaptation. This book targets researchers working in artificial intelligence, machine learning, deep learning and computer vision. Industry professionals and entrepreneurs seeking to adopt deep learning into their applications will also be interested in this book.


Distribution Alignment for Unsupervised Domain Adaptation

Distribution Alignment for Unsupervised Domain Adaptation

Author: Baoyao Yang

Publisher:

Published: 2018

Total Pages: 129

ISBN-13:

DOWNLOAD EBOOK

In recent years, many machine learning algorithms have been developed and widely applied in various applications. However, most of them have considered the data distributions of the training and test datasets to be similar. This thesis concerns on the decrease of generalization ability in a test dataset when the data distribution is different from that of the training dataset. As labels may be unavailable in the test dataset in practical applications, we follow the effective approach of unsupervised domain adaptation and propose distribution alignment methods to improve the generalization ability of models learned from the training dataset in the test dataset. To solve the problem of joint distribution alignment without target labels, we propose a new criterion of domain-shared group sparsity that is an equivalent condition for equal conditional distribution. A domain-shared group-sparse dictionary learning model is built with the proposed criterion, and a cross-domain label propagation method is developed to learn a target-domain classifier using the domain-shared group-sparse representations and the target-specific information from the target data. Experimental results show that the proposed method achieves good performance on cross-domain face and object recognition. Moreover, most distribution alignment methods have not considered the difference in distribution structures, which results in insufficient alignment across domains. Therefore, a novel graph alignment method is proposed, which aligns both data representations and distribution structural information across the source and target domains. An adversarial network is developed for graph alignment by mapping both source and target data to a feature space where the data are distributed with unified structure criteria. Promising results have been obtained in the experiments on cross-dataset digit and object recognition. Problem of dataset bias also exists in human pose estimation across datasets with different image qualities. Thus, this thesis proposes to synthesize target body parts for cross-domain distribution alignment, to address the problem of cross-quality pose estimation. A translative dictionary is learned to associate the source and target domains, and a cross-quality adaptation model is developed to refine the source pose estimator using the synthesized target body parts. We perform cross-quality experiments on three datasets with different image quality using two state-of-the-art pose estimators, and compare the proposed method with five unsupervised domain adaptation methods. Our experimental results show that the proposed method outperforms not only the source pose estimators, but also other unsupervised domain adaptation methods.


Person Re-Identification

Person Re-Identification

Author: Shaogang Gong

Publisher: Springer Science & Business Media

Published: 2014-01-03

Total Pages: 446

ISBN-13: 144716296X

DOWNLOAD EBOOK

The first book of its kind dedicated to the challenge of person re-identification, this text provides an in-depth, multidisciplinary discussion of recent developments and state-of-the-art methods. Features: introduces examples of robust feature representations, reviews salient feature weighting and selection mechanisms and examines the benefits of semantic attributes; describes how to segregate meaningful body parts from background clutter; examines the use of 3D depth images and contextual constraints derived from the visual appearance of a group; reviews approaches to feature transfer function and distance metric learning and discusses potential solutions to issues of data scalability and identity inference; investigates the limitations of existing benchmark datasets, presents strategies for camera topology inference and describes techniques for improving post-rank search efficiency; explores the design rationale and implementation considerations of building a practical re-identification system.


Dataset Shift in Machine Learning

Dataset Shift in Machine Learning

Author: Joaquin Quinonero-Candela

Publisher: MIT Press

Published: 2022-06-07

Total Pages: 246

ISBN-13: 026254587X

DOWNLOAD EBOOK

An overview of recent efforts in the machine learning community to deal with dataset and covariate shift, which occurs when test and training inputs and outputs have different distributions. Dataset shift is a common problem in predictive modeling that occurs when the joint distribution of inputs and outputs differs between training and test stages. Covariate shift, a particular case of dataset shift, occurs when only the input distribution changes. Dataset shift is present in most practical applications, for reasons ranging from the bias introduced by experimental design to the irreproducibility of the testing conditions at training time. (An example is -email spam filtering, which may fail to recognize spam that differs in form from the spam the automatic filter has been built on.) Despite this, and despite the attention given to the apparently similar problems of semi-supervised learning and active learning, dataset shift has received relatively little attention in the machine learning community until recently. This volume offers an overview of current efforts to deal with dataset and covariate shift. The chapters offer a mathematical and philosophical introduction to the problem, place dataset shift in relationship to transfer learning, transduction, local learning, active learning, and semi-supervised learning, provide theoretical views of dataset and covariate shift (including decision theoretic and Bayesian perspectives), and present algorithms for covariate shift. Contributors: Shai Ben-David, Steffen Bickel, Karsten Borgwardt, Michael Brückner, David Corfield, Amir Globerson, Arthur Gretton, Lars Kai Hansen, Matthias Hein, Jiayuan Huang, Choon Hui Teo, Takafumi Kanamori, Klaus-Robert Müller, Sam Roweis, Neil Rubens, Tobias Scheffer, Marcel Schmittfull, Bernhard Schölkopf Hidetoshi Shimodaira, Alex Smola, Amos Storkey, Masashi Sugiyama


Supervised and Unsupervised Pattern Recognition

Supervised and Unsupervised Pattern Recognition

Author: Evangelia Miche Tzanakou

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 475

ISBN-13: 1351835556

DOWNLOAD EBOOK

There are many books on neural networks, some of which cover computational intelligence, but none that incorporate both feature extraction and computational intelligence, as Supervised and Unsupervised Pattern Recognition does. This volume describes the application of a novel, unsupervised pattern recognition scheme to the classification of various types of waveforms and images. This substantial collection of recent research begins with an introduction to Neural Networks, classifiers, and feature extraction methods. It then addresses unsupervised and fuzzy neural networks and their applications to handwritten character recognition and recognition of normal and abnormal visual evoked potentials. The third section deals with advanced neural network architectures-including modular design-and their applications to medicine and three-dimensional NN architecture simulating brain functions. The final section discusses general applications and simulations, such as the establishment of a brain-computer link, speaker identification, and face recognition. In the quickly changing field of computational intelligence, every discovery is significant. Supervised and Unsupervised Pattern Recognition gives you access to many notable findings in one convenient volume.


Representation Learning for Natural Language Processing

Representation Learning for Natural Language Processing

Author: Zhiyuan Liu

Publisher: Springer Nature

Published: 2020-07-03

Total Pages: 319

ISBN-13: 9811555737

DOWNLOAD EBOOK

This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.


Computer Vision – ECCV 2018

Computer Vision – ECCV 2018

Author: Vittorio Ferrari

Publisher: Springer

Published: 2018-10-09

Total Pages: 853

ISBN-13: 9783030012632

DOWNLOAD EBOOK

The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018.The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization; matching and recognition; video attention; and poster sessions.