Networked and Event-Triggered Control Approaches in Cyber-Physical Systems

Networked and Event-Triggered Control Approaches in Cyber-Physical Systems

Author: Jinhui Zhang

Publisher: CRC Press

Published: 2022-01-27

Total Pages: 221

ISBN-13: 1000534286

DOWNLOAD EBOOK

The insertion of communication networks in feedback control loops complicates analysis and synthesis of cyber-physical systems (CPSs), and network-induced uncertainties may degrade system control performance. Thus, this book researches networked delay compensation and event-triggered control approaches for a series of CPSs subject to network-induced uncertainties. The authors begin with an introduction to the concepts and challenges of CPSs, followed by an overview of networked control approaches and event-triggered control strategies in CPSs. Then, networked delay compensation and event-triggered control approaches are proposed for CPSs with network communication delay, data dropout, signal quantization, and event-triggered communication. More specifically, networked delay compensation approaches are proposed for linear/nonlinear networked controlled plants with time-varying and random network communication delays and data dropouts. To reduce computational burden and network communication loads in CPSs, event-triggered control, self-triggered control, co-design of event-triggered control and quantized control techniques, and event-triggered disturbance rejection control approaches are also presented. This book is an essential text for researchers and engineers interested in cybersecurity, networked control, and CPSs. It would also prove useful for graduate students in the fields of science, engineering, and computer science.


Control of Cyber-Physical Systems

Control of Cyber-Physical Systems

Author: Danielle C. Tarraf

Publisher: Springer

Published: 2013-06-30

Total Pages: 379

ISBN-13: 3319011596

DOWNLOAD EBOOK

Cyber-physical systems (CPS) involve deeply integrated, tightly coupled computational and physical components. These systems, spanning multiple scientific and technological domains, are highly complex and pose several fundamental challenges. They are also critically important to society’s advancement and security. The design and deployment of the adaptable, reliable CPS of tomorrow requires the development of a basic science foundation, synergistically drawing on various branches of engineering, mathematics, computer science, and domain specific knowledge. This book brings together 19 invited papers presented at the Workshop on Control of Cyber-Physical Systems, hosted by the Department of Electrical & Computer Engineering at The Johns Hopkins University in March 2013. It highlights the central role of control theory and systems thinking in developing the theory of CPS, in addressing the challenges of cyber-trust and cyber-security, and in advancing emerging cyber-physical applications ranging from smart grids to smart buildings, cars and robotic systems.


Multilayer Control of Networked Cyber-Physical Systems

Multilayer Control of Networked Cyber-Physical Systems

Author: Sabato Manfredi

Publisher: Springer

Published: 2016-09-17

Total Pages: 153

ISBN-13: 3319416464

DOWNLOAD EBOOK

This book faces the interdisciplinary challenge of formulating performance-assessing design approaches for networked cyber-physical systems (NCPSs). Its novel distributed multilayer cooperative control deals simultaneously with communication-network and control performance required for the network and application layers of an NCPS respectively. Practically, it distributes the computational burden among different devices, which act cooperatively to achieve NCPS goals. The approach can be applied to NCPSs based on both wired and wireless technologies and so is suitable for future network infrastructures in which different protocols and technologies coexist. The book reports realistic results from performance evaluation of the new approach, when applied in different operative scenarios. Readers of this book will benefit by: learning a general, technology-independent methodology for the design and implementation of cooperative distributed algorithms for flow control at the network layer of an NCPS that gives algorithm-parameter-tuning guidelines for assessing the desired quality of service performance; learning a general methodology for the design and implementation of consensus-based algorithms at the application layer that allows monitoring and control of distributed physical systems and gives algorithm-parameter-tuning guidelines for assessing the desired control system performance; understanding the main network simulators needed to validate the effectiveness of the proposed multilayer control approach in different realistic network operation scenarios; and practising with a cooperative multilayer control project that assesses acceptable NCPS performance in networked monitoring and robot systems, autonomous and queuing networks, and other critical human relief applications. Researchers, graduate students and practitioners working in automation, engineering, sensor networks, mobile robotics and computer networks will find this book instructive. It will also be helpful to network administrators and technicians implementing application-layer and network-layer solutions or installing, configuring or troubleshooting network and control system components of NCPSs.


Event-Based Control and Signal Processing

Event-Based Control and Signal Processing

Author: Marek Miskowicz

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 558

ISBN-13: 1482256568

DOWNLOAD EBOOK

Event-based systems are a class of reactive systems deployed in a wide spectrum of engineering disciplines including control, communication, signal processing, and electronic instrumentation. Activities in event-based systems are triggered in response to events usually representing a significant change of the state of controlled or monitored physical variables. Event-based systems adopt a model of calls for resources only if it is necessary, and therefore, they are characterized by efficient utilization of communication bandwidth, computation capability, and energy budget. Currently, the economical use of constrained technical resources is a critical issue in various application domains because many systems become increasingly networked, wireless, and spatially distributed. Event-Based Control and Signal Processing examines the event-based paradigm in control, communication, and signal processing, with a focus on implementation in networked sensor and control systems. Featuring 23 chapters contributed by more than 60 leading researchers from around the world, this book covers: Methods of analysis and design of event-based control and signal processing Event-driven control and optimization of hybrid systems Decentralized event-triggered control Periodic event-triggered control Model-based event-triggered control and event-triggered generalized predictive control Event-based intermittent control in man and machine Event-based PID controllers Event-based state estimation Self-triggered and team-triggered control Event-triggered and time-triggered real-time architectures for embedded systems Event-based continuous-time signal acquisition and DSP Statistical event-based signal processing in distributed detection and estimation Asynchronous spike event coding technique with address event representation Event-based processing of non-stationary signals Event-based digital (FIR and IIR) filters Event-based local bandwidth estimation and signal reconstruction Event-Based Control and Signal Processing is the first extensive study on both event-based control and event-based signal processing, presenting scientific contributions at the cutting edge of modern science and engineering.


Secure Control of Networked Control Systems and Its Applications

Secure Control of Networked Control Systems and Its Applications

Author: Dong Yue

Publisher: Springer Nature

Published: 2021-02-15

Total Pages: 272

ISBN-13: 981336730X

DOWNLOAD EBOOK

This book shows some secure control methods of networked control systems related to linear control system, nonlinear control system, multi-agent system and its applications in power systems. The proposed secure control methods provide some useful results about modeling of network attacks, resilient analysis and synthesis methods, active defense control method.The contents of this book are lists as followings. (1) Modeling of DoS attacks, deception attacks and replay attacks; (2)Secure control methods are proposed by combing delay system method, switched system method and event-based control method. (3) Active control methods are proposed by using model-predictive control and redundant control. (4) The proposed control methods are applied to the security problem of power system.The methods of this book include DoS attacks modeling such as, periodic jamming attack model,model-based average dwell time model, deception attack modeling and relay attack modeling; piece-wise Lyapunov-Krasoviskiifunctional method, stochastic control method; the results including resilient conditions of networked control system and related resilient control design method with linear matrix inequalities(LMIs).From this book, readers can learn about the general network attack modeling methods, resilient analysis and synthesis methods, active control methods from viewpoint of redundancy control, and secure conditions of power systems.Some fundamental knowledge prepared to read this book includes delay system theory, event triggered mechanism, T-S fuzzy system theory and frequency/voltage control of power system.


Principles of Cyber-Physical Systems

Principles of Cyber-Physical Systems

Author: Sandip Roy

Publisher: Cambridge University Press

Published: 2020-10-15

Total Pages: 463

ISBN-13: 1108916074

DOWNLOAD EBOOK

This unique introduction to the foundational concepts of cyber-physical systems (CPS) describes key design principles and emerging research trends in detail. Several interdisciplinary applications are covered, with a focus on the wide-area management of infrastructures including electric power systems, air transportation networks, and health care systems. Design, control and optimization of cyber-physical infrastructures are discussed, addressing security and privacy issues of networked CPS, presenting graph-theoretic and numerical approaches to CPS evaluation and monitoring, and providing readers with the knowledge needed to operate CPS in a reliable, efficient, and secure manner. Exercises are included. This is an ideal resource for researchers and graduate students in electrical engineering and computer science, as well as for practitioners using cyber-physical systems in aerospace and automotive engineering, medical technology, and large-scale infrastructure operations.


Cyberphysical Infrastructures in Power Systems

Cyberphysical Infrastructures in Power Systems

Author: Magdi S. Mahmoud

Publisher: Academic Press

Published: 2021-10-23

Total Pages: 426

ISBN-13: 0323852629

DOWNLOAD EBOOK

In an uncertain and complex environment, to ensure secure and stable operations of large-scale power systems is one of the biggest challenges that power engineers have to address today. Traditionally, power system operations and decision-making in controls are based on power system computations of physical models describing the behavior of power systems. Largely, physical models are constructed according to some assumptions and simplifications, and such is the case with power system models. However, the complexity of power system stability problems, along with the system's inherent uncertainties and nonlinearities, can result in models that are impractical or inaccurate. This calls for adaptive or deep-learning algorithms to significantly improve current control schemes that solve decision and control problems. Cyberphysical Infrastructures in Power Systems: Architectures and Vulnerabilities provides an extensive overview of CPS concepts and infrastructures in power systems with a focus on the current state-of-the-art research in this field. Detailed classifications are pursued highlighting existing solutions, problems, and developments in this area. - Gathers the theoretical preliminaries and fundamental issues related to CPS architectures. - Provides coherent results in adopting control and communication methodologies to critically examine problems in various units within smart power systems and microgrid systems. - Presents advanced analysis under cyberphysical attacks and develops resilient control strategies to guarantee safe operation at various power levels.


Modeling, Control, Estimation, and Optimization for Microgrids

Modeling, Control, Estimation, and Optimization for Microgrids

Author: Zhixiong Zhong

Publisher: CRC Press

Published: 2019-10-28

Total Pages: 379

ISBN-13: 1351032453

DOWNLOAD EBOOK

Due to increasing economic and environmental pressures, small-scale grids have received increasing attention in the last fifteen years. These renewable sources, such as solar PVs, wind turbines, and fuel cells, integrated with grid, have changed the way we live our lives. This book describes microgrid dynamics modeling and nonlinear control issues from introductory to the advanced steps. The book addresses the most relevant challenges in microgrid protection and control including modeling, uncertainty, stability issues, local control, coordination control, power quality, and economic dispatch.


Economic Model Predictive Control

Economic Model Predictive Control

Author: Helen Durand

Publisher: Foundations and Trends (R) in Systems and Control

Published: 2018-06-19

Total Pages: 68

ISBN-13: 9781680834321

DOWNLOAD EBOOK

Economic Model Predictive Control (EMPC) is a control strategy that moves process operation away from the steady-state paradigm toward a potentially time-varying operating strategy to improve process profitability. The EMPC literature is replete with evidence that this new paradigm may enhance process profits when a model of the chemical process provides a sufficiently accurate representation of the process dynamics. Systems using EMPC often neglect the dynamics associated with equipment and are often neglected when modeling a chemical process. Recent studies have shown they can significantly impact the effectiveness of an EMPC system. Concentrating on valve behavior in a chemical process, this monograph develops insights into the manner in which equipment behavior should impact the design process for EMPC and to provide a perspective on a number of open research topics in this direction. Written in tutorial style, this monograph provides the reader with a full literature review of the topic and demonstrates how these techniques can be adopted in a practical system.