Carefully crafted to provide tightly focused and authoritative information, the Directory of Therapeutic Enzymes covers all approved therapeutic enzymes currently used in medicine. Written mainly by industry experts, the book includes information sourced directly from the company that developed or manufactured the product. It explores major
Enzymes have interesting applications in our biological system and act as valuable biocatalysts. Their various functions allow enzymes to develop new drugs, detoxifications, and pharmaceutical chemistry. Research Advancements in Pharmaceutical, Nutritional, and Industrial Enzymology provides emerging research on biosynthesis, enzymatic treatments, and bioengineering of medicinal waste. While highlighting issues such as structural implications for drug development and food applications, this publication explores information on various applications of enzymes in pharmaceutical, nutritional, and industrial aspects. This book is a valuable resource for medical professionals, pharmacists, pharmaceutical companies, researchers, academics, and upper-level students seeking current information on developing scientific ideas for new drugs and other enzymatic advancements.
Therapeutic enzymes exhibit fascinating features and opportunities, and represent a significant and promising subcategory of modern biopharmaceuticals for the treatment of several severe diseases. Research and drug developments efforts and the advancements in biotechnology over the past twenty years have greatly assisted the introduction of efficient and safe enzyme-based therapies for a range of both rare and common disorders. The introduction and regulatory approval of twenty different recombinant enzymes has enabled effective enzyme-replacement therapy. This volume aims to overview these therapeutic enzymes, focusing in particular on more recently approved enzymes produced by recombinant DNA technology. This volume is composed of four sections. Section 1 provides an overview of the production process and biochemical characterization of therapeutic enzymes, while Section 2 focuses upon the engineering strategies and delivery methods of therapeutic enzymes. Section 3 highlights the clinical applications of approved therapeutic enzymes, including aspects on their structure, indications and mechanisms of action. Together with information on these mechanisms, safety and immunogenicity issues and various adverse events of the recombinant enzymes used for therapy are discussed. Section 4, provides discussion on the prospective and future developments of new therapeutic enzymes. This book is aimed at academics, researchers and students undertaking advanced undergraduate/postgraduate programs in the biopharmaceutical/biotechnology area who wish to gain a comprehensive understanding of enzyme-based therapeutic molecules.
Labs on Chip: Principles, Design and Technology provides a complete reference for the complex field of labs on chip in biotechnology. Merging three main areas— fluid dynamics, monolithic micro- and nanotechnology, and out-of-equilibrium biochemistry—this text integrates coverage of technology issues with strong theoretical explanations of design techniques. Analyzing each subject from basic principles to relevant applications, this book: Describes the biochemical elements required to work on labs on chip Discusses fabrication, microfluidic, and electronic and optical detection techniques Addresses planar technologies, polymer microfabrication, and process scalability to huge volumes Presents a global view of current lab-on-chip research and development Devotes an entire chapter to labs on chip for genetics Summarizing in one source the different technical competencies required, Labs on Chip: Principles, Design and Technology offers valuable guidance for the lab-on-chip design decision-making process, while exploring essential elements of labs on chip useful both to the professional who wants to approach a new field and to the specialist who wants to gain a broader perspective.
The Organic Chemistry of Drug Design and Drug Action, Third Edition, represents a unique approach to medicinal chemistry based on physical organic chemical principles and reaction mechanisms that rationalize drug action, which allows reader to extrapolate those core principles and mechanisms to many related classes of drug molecules. This new edition includes updates to all chapters, including new examples and references. It reflects significant changes in the process of drug design over the last decade and preserves the successful approach of the previous editions while including significant changes in format and coverage. This text is designed for undergraduate and graduate students in chemistry studying medicinal chemistry or pharmaceutical chemistry; research chemists and biochemists working in pharmaceutical and biotechnology industries. - Updates to all chapters, including new examples and references - Chapter 1 (Introduction): Completely rewritten and expanded as an overview of topics discussed in detail throughout the book - Chapter 2 (Lead Discovery and Lead Modification): Sections on sources of compounds for screening including library collections, virtual screening, and computational methods, as well as hit-to-lead and scaffold hopping; expanded sections on sources of lead compounds, fragment-based lead discovery, and molecular graphics; and deemphasized solid-phase synthesis and combinatorial chemistry - Chapter 3 (Receptors): Drug-receptor interactions, cation-p and halogen bonding; atropisomers; case history of the insomnia drug suvorexant - Chapter 4 (Enzymes): Expanded sections on enzyme catalysis in drug discovery and enzyme synthesis - Chapter 5 (Enzyme Inhibition and Inactivation): New case histories: - for competitive inhibition, the epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib and Abelson kinase inhibitor, imatinib - for transition state analogue inhibition, the purine nucleoside phosphorylase inhibitors, forodesine and DADMe-ImmH, as well as the mechanism of the multisubstrate analog inhibitor isoniazid - for slow, tight-binding inhibition, the dipeptidyl peptidase-4 inhibitor, saxagliptin - Chapter 7 (Drug Resistance and Drug Synergism): This new chapter includes topics taken from two chapters in the previous edition, with many new examples - Chapter 8 (Drug Metabolism): Discussions of toxicophores and reactive metabolites - Chapter 9 (Prodrugs and Drug Delivery Systems): Discussion of antibody–drug conjugates
Enzymes: Novel Biotechnological Approaches for the Food Industry provides an in-depth background of the most up-to-date scientific research and information related to food biotechnology and offers a wide spectrum of biological applications. This book addresses novel biotechnological approaches for the use of enzymes in the food industry to help readers understand the potential uses of biological applications to advance research. This is an essential resource to researchers and both undergraduate and graduate students in the biotechnological industries. - Provides fundamental and rigorous scientific information on enzymes - Illustrates enzymes as tools to achieve value and quality to a product, either in vitro or in vivo - Presents the most updated knowledge in the area of food biotechnology - Demonstrates novel horizons and potential for the use of enzymes in industrial applications
Pharmaceutical Biotechnology offers students taking Pharmacy and related Medical and Pharmaceutical courses a comprehensive introduction to the fast-moving area of biopharmaceuticals. With a particular focus on the subject taken from a pharmaceutical perspective, initial chapters offer a broad introduction to protein science and recombinant DNA technology- key areas that underpin the whole subject. Subsequent chapters focus upon the development, production and analysis of these substances. Finally the book moves on to explore the science, biotechnology and medical applications of specific biotech products categories. These include not only protein-based substances but also nucleic acid and cell-based products. introduces essential principles underlining modern biotechnology- recombinant DNA technology and protein science an invaluable introduction to this fast-moving subject aimed specifically at pharmacy and medical students includes specific ‘product category chapters’ focusing on the pharmaceutical, medical and therapeutic properties of numerous biopharmaceutical products. entire chapter devoted to the principles of genetic engineering and how these drugs are developed. includes numerous relevant case studies to enhance student understanding no prior knowledge of protein structure is assumed
This Special Issue of Marine Drugs gathers recent investigations on the proteomes, metabolomes, transcriptomes, and the associated microbiomes of marine jellyfish and polyps, including bioactivity studies of their compounds and more generally, on their biotechnological potential, witnessing the increasingly recognized importance of Cnidaria as a largely untapped Blue Growth resource for new drug discovery. These researches evoke the outstanding ecological importance of cnidarians in marine ecosystems worldwide, calling for a global monitoring and conservation of marine biodiversity, so that the biotechnological exploitation of marine living resources will be carried out to conserve and sustainably use the natural capital of the oceans.