In the belief that every engineer and scientist working with signals or data should have a knowledge of them, Jan (electrical engineering and computer science, Technical U. of Brno, Czech Republic) explains some of the theoretical concepts that underlie the methods now in common use to process and analyze signals and data. He examines such topics as classical digital filtering, averaging methods to improve the signal-to-noise ratio of repetitive signals, correlation and spectral analysis, methods to estimate and define unknown signals, non-linear processing and neural networks, and multidimensional signals and data. The Czech original Cislicova filtrace, analyza a resaurace signalu was published by Vutium Press, Brno, in 1997. c. Book News Inc.
New computerized approaches to various problems have become critically important in healthcare. Computer assisted diagnosis has been extended towards a support of the clinical treatment. Mathematical information analysis, computer applications have become standard tools underpinning the current rapid progress with developing Computational Intelligence. A computerized support in the analysis of patient information and implementation of a computer aided diagnosis and treatment systems, increases the objectivity of the analysis and speeds up the response to pathological changes. This book presents a variety of state-of-the-art information technology and its applications to the networked environment to allow robust computerized approaches to be introduced throughout the healthcare enterprise. Image analysis and its application is the traditional part that deals with the problem of data processing, recognition and classification. Bioinformatics has become a dynamically developed field of computer assisted biological data analysis. This book is a great reference tool for scientists who deal with problems of designing and implementing processing tools employed in systems that assist the radiologists and biologists in patient data analysis.
Ultrasonic methods have been very popular in nondestructive testing and characterization of materials. This book deals with both industrial ultrasound and medical ultrasound. The advantages of ultrasound include flexibility, low cost, in-line operation, and providing data in both signal and image formats for further analysis. The book devotes 11 chapters to ultrasonic methods. However, ultrasonic methods can be much less effective with some applications. So the book also has 14 chapters catering to other or advanced methods for nondestructive testing or material characterization. Topics like structural health monitoring, Terahertz methods, X-ray and thermography methods are presented. Besides different sensors for nondestructive testing, the book places much emphasis on signal/image processing and pattern recognition of the signals acquired.
This book constitutes the refereed proceedings of the 6th International Workshop on Biomedical Image Registration, WBIR 2014, held in London, UK, in July 2014. The 16 full papers and 8 poster papers included in this volume were carefully reviewed and selected from numerous submitted papers. The full papers are organized in the following topical sections: computational efficiency, model based regularisation, optimisation, reconstruction, interventional application and application specific measures of similarity.
Intended as a handbook for administrators and engineers, this book reviews the processes of interference management, regulation of competing service providers, and system standardization for the control and use of the radio spectrum. The second edition reflects changes in the field since 1991, such as the increased use of mobile radiotelephones, the introduction of low-orbit satellite systems, restructuring of fees, and government regulation. Annotation copyrighted by Book News, Inc., Portland, OR
This text emphasizes the intricate relationship between adaptive filtering and signal analysis - highlighting stochastic processes, signal representations and properties, analytical tools, and implementation methods. This second edition includes new chapters on adaptive techniques in communications and rotation-based algorithms. It provides practical applications in information, estimation, and circuit theories.
Digital signal processing plays a central role in the development of modern communication and information processing systems. The theory and application of signal processing is concerned with the identification, modelling and utilisation of patterns and structures in a signal process. The observation signals are often distorted, incomplete and noisy and therefore noise reduction, the removal of channel distortion, and replacement of lost samples are important parts of a signal processing system. The fourth edition of Advanced Digital Signal Processing and Noise Reduction updates and extends the chapters in the previous edition and includes two new chapters on MIMO systems, Correlation and Eigen analysis and independent component analysis. The wide range of topics covered in this book include Wiener filters, echo cancellation, channel equalisation, spectral estimation, detection and removal of impulsive and transient noise, interpolation of missing data segments, speech enhancement and noise/interference in mobile communication environments. This book provides a coherent and structured presentation of the theory and applications of statistical signal processing and noise reduction methods. Two new chapters on MIMO systems, correlation and Eigen analysis and independent component analysis Comprehensive coverage of advanced digital signal processing and noise reduction methods for communication and information processing systems Examples and applications in signal and information extraction from noisy data Comprehensive but accessible coverage of signal processing theory including probability models, Bayesian inference, hidden Markov models, adaptive filters and Linear prediction models Advanced Digital Signal Processing and Noise Reduction is an invaluable text for postgraduates, senior undergraduates and researchers in the fields of digital signal processing, telecommunications and statistical data analysis. It will also be of interest to professional engineers in telecommunications and audio and signal processing industries and network planners and implementers in mobile and wireless communication communities.
Differently oriented specialists and students involved in image processing and analysis need to have a firm grasp of concepts and methods used in this now widely utilized area. This book aims at being a single-source reference providing such foundations in the form of theoretical yet clear and easy to follow explanations of underlying generic concepts. Medical Image Processing, Reconstruction and Analysis – Concepts and Methods explains the general principles and methods of image processing and analysis, focusing namely on applications used in medical imaging. The content of this book is divided into three parts: Part I – Images as Multidimensional Signals provides the introduction to basic image processing theory, explaining it for both analogue and digital image representations. Part II – Imaging Systems as Data Sources offers a non-traditional view on imaging modalities, explaining their principles influencing properties of the obtained images that are to be subsequently processed by methods described in this book. Newly, principles of novel modalities, as spectral CT, functional MRI, ultrafast planar-wave ultrasonography and optical coherence tomography are included. Part III – Image Processing and Analysis focuses on tomographic image reconstruction, image fusion and methods of image enhancement and restoration; further it explains concepts of low-level image analysis as texture analysis, image segmentation and morphological transforms. A new chapter deals with selected areas of higher-level analysis, as principal and independent component analysis and particularly the novel analytic approach based on deep learning. Briefly, also the medical image-processing environment is treated, including processes for image archiving and communication. Features Presents a theoretically exact yet understandable explanation of image processing and analysis concepts and methods Offers practical interpretations of all theoretical conclusions, as derived in the consistent explanation Provides a concise treatment of a wide variety of medical imaging modalities including novel ones, with respect to properties of provided image data