Rock Anisotropy and the Theory of Stress Measurements

Rock Anisotropy and the Theory of Stress Measurements

Author: Bernard Amadei

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 498

ISBN-13: 3642820409

DOWNLOAD EBOOK

Any undisturbed rock mass is subject to natural stresses inclu ding gravitational stresses due to the mass of the overburden and possibly tectonic stresses due to the straining of the earth's crust and remanent stresses due to past tectonism. Knowledge of the in situ stress field must be integrated into any rock engineering design along with general rock mass characteristics such as de for mability, strength, permeability and time dependent behavior. For example, the choice of optimum orientation and shape of deep underground caverns or complex underground works will be controlled by the orientation and the magnitude of the in situ stress @ield if it is necessary to minimize stress concentration problems. Long term variation of the in situ stress field may also help to evaluate the potential hazard of earthquake occurences. The magnitude and orientation of the stress field ata point within a rock mass can be measured but there is no known method by which the state of stress at a point can be accurately determined by instruments located remotely. In general, measurements are made inside boreholes, on outcrops or on the internal surfaces of under ground cavities. Most of the measuring techniques intentionally disturb the state of stress in the rock and then measure consequent strains and displacements. Measured strains or displacements are then related to the stresses through assumptions of material behavior. A common procedure is to assume that the rock mass is linearly elastic, isotropic, continuous and homogeneous.


Geotechnical Slope Analysis

Geotechnical Slope Analysis

Author: Robin Chowdhury

Publisher: CRC Press

Published: 2023-11-30

Total Pages: 823

ISBN-13: 1136730702

DOWNLOAD EBOOK

This second edition of Geotechnical Slope Analysis is an updated version of the original scholarly book. In this edition, concepts and applications have been thoroughly revised. In particular, the ‘Initial Stress Approach’ has been extended to 2D problems in a more rigorous manner. Additional solved numerical examples have been added in several chapters. More importantly, the meaning of the results is explored through interpretation. The influence of initial stresses, pore water pressures and seismic forces has been explored not only on performance indicators such as the ‘Factor of Safety’ but also on the location of critical slip surfaces. In addition to these factors, it is shown that the chosen method of analysis may also have a significant influence on the location of the critical slip surface. Student exercises have been included in some chapters with a view to encouraging further study and research, and reference is often made to case studies of particular importance. The best features of the book have been retained with continued emphasis on both deterministic and probabilistic approaches for quantifying slope performance. The traditional performance indicator such as ‘Factor of Safety’ can be complemented by the calculation of the ‘Reliability Index’ and the ‘Probability of Failure’. This book focuses on research studies concerning slope behaviour, the occurrence of landslides and the use of alternative methods of analysis and interpretation. The importance of uncertainties in slope performance and, more broadly, in geotechnical engineering is emphasised. This book will be valuable to undergraduate and senior students of civil, mining and geological engineering as well as to academic teachers and instructors and also to researchers, practising geotechnical engineers and consultants.


Slope Analysis

Slope Analysis

Author: R Chowdury

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 436

ISBN-13: 0444601392

DOWNLOAD EBOOK

Slope Analysis summarizes the fundamental principles of slope analysis. It explores not only the similarities but also the differences in rock slopes and soil slopes, and it presents alternative methods of analysis, new concepts, and new approaches to analysis. The book introduces both natural and man-made slopes, the nature of soils and rocks, geomorphology, geology, and the aims of slope analysis. These topics are followed by chapters about stress and strain, shear strength of rock and soils, and progressive failure of slopes. This book also presents limit equilibrium methods I and II, which are the planar failure surfaces and slip surfaces of arbitrary shape, respectively. It also includes stress analysis and slope stability, natural slope analysis, and a brief review on plasticity and shear band analysis. Before presenting its conclusions, the book discusses special aspects of slope analysis, such as earthquake analysis, pseudo-static analysis, dynamic analysis, and anisotropy, in addition to Newmark's approach.


Engineered Rock Structures in Mining and Civil Construction

Engineered Rock Structures in Mining and Civil Construction

Author: Raghu N. Singh

Publisher: CRC Press

Published: 2006-01-26

Total Pages: 538

ISBN-13: 9780415400138

DOWNLOAD EBOOK

The book collates and sifts a vast amount of literature on the design of structures in the mining and construction industries to synthesize a comprehensive text on the subject area. The focus is on the application of theory to practice and the book is richly illustrated with worked out examples. The presentation is lucid and based on the extensive professional, teaching and research experience of the authors. The text seeks to address the key issues of design of 'engineered' structures in or on rock. The book will serve as a standard text for undergraduate courses in mining, civil engineering and engineering geology.


The Rock Physics Handbook

The Rock Physics Handbook

Author: Gary Mavko

Publisher: Cambridge University Press

Published: 2009-04-30

Total Pages: 525

ISBN-13: 113947832X

DOWNLOAD EBOOK

The Rock Physics Handbook addresses the relationships between geophysical observations and the underlying physical properties of rocks. It distills a vast quantity of background theory and laboratory results into a series of concise chapters that provide practical solutions to problems in geophysical data interpretation. This expanded second edition presents major new chapters on statistical rock physics and velocity-porosity-clay models for clastic sediments. Other new and expanded topics include anisotropic seismic signatures, borehole waves, models for fractured media, poroelastic models, and attenuation models. This new edition also provides an enhanced set of appendices with key empirical results, data tables, and an atlas of reservoir rock properties - extended to include carbonates, clays, gas hydrates, and heavy oils. Supported by a website hosting MATLAB® routines for implementing the various rock physics formulas, this book is a vital resource for advanced students and university faculty, as well as petroleum industry geophysicists and engineers.