Change Detection and Image Time-Series Analysis 1

Change Detection and Image Time-Series Analysis 1

Author: Abdourrahmane M. Atto

Publisher: John Wiley & Sons

Published: 2022-01-06

Total Pages: 306

ISBN-13: 178945056X

DOWNLOAD EBOOK

Change Detection and Image Time Series Analysis 1 presents a wide range of unsupervised methods for temporal evolution analysis through the use of image time series associated with optical and/or synthetic aperture radar acquisition modalities. Chapter 1 introduces two unsupervised approaches to multiple-change detection in bi-temporal multivariate images, with Chapters 2 and 3 addressing change detection in image time series in the context of the statistical analysis of covariance matrices. Chapter 4 focuses on wavelets and convolutional-neural filters for feature extraction and entropy-based anomaly detection, and Chapter 5 deals with a number of metrics such as cross correlation ratios and the Hausdorff distance for variational analysis of the state of snow. Chapter 6 presents a fractional dynamic stochastic field model for spatio temporal forecasting and for monitoring fast-moving meteorological events such as cyclones. Chapter 7 proposes an analysis based on characteristic points for texture modeling, in the context of graph theory, and Chapter 8 focuses on detecting new land cover types by classification-based change detection or feature/pixel based change detection. Chapter 9 focuses on the modeling of classes in the difference image and derives a multiclass model for this difference image in the context of change vector analysis.


Two-Dimensional Change Detection Methods

Two-Dimensional Change Detection Methods

Author: Murat İlsever

Publisher: Springer Science & Business Media

Published: 2012-06-22

Total Pages: 77

ISBN-13: 1447142551

DOWNLOAD EBOOK

Change detection using remotely sensed images has many applications, such as urban monitoring, land-cover change analysis, and disaster management. This work investigates two-dimensional change detection methods. The existing methods in the literature are grouped into four categories: pixel-based, transformation-based, texture analysis-based, and structure-based. In addition to testing existing methods, four new change detection methods are introduced: fuzzy logic-based, shadow detection-based, local feature-based, and bipartite graph matching-based. The latter two methods form the basis for a structural analysis of change detection. Three thresholding algorithms are compared, and their effects on the performance of change detection methods are measured. These tests on existing and novel change detection methods make use of a total of 35 panchromatic and multi-spectral Ikonos image sets. Quantitative test results and their interpretations are provided.


Detection of Change

Detection of Change

Author: John Polich

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 193

ISBN-13: 1461502942

DOWNLOAD EBOOK

This volume presents the first systematic overview of how event-related brain potential (ERP), cognitive electroencephalography (EEG), and functional magnetic imaging (fMRI) measures reflect the mental events arising from changes in sensory stimulation. The contents are fresh, the literature distillations highly informative, and the range of topics extremely useful for cognitive neuroscientists, psychologists, and researchers.


Conformal Prediction for Reliable Machine Learning

Conformal Prediction for Reliable Machine Learning

Author: Vineeth Balasubramanian

Publisher: Newnes

Published: 2014-04-23

Total Pages: 323

ISBN-13: 0124017150

DOWNLOAD EBOOK

The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detection. As practitioners and researchers around the world apply and adapt the framework, this edited volume brings together these bodies of work, providing a springboard for further research as well as a handbook for application in real-world problems. - Understand the theoretical foundations of this important framework that can provide a reliable measure of confidence with predictions in machine learning - Be able to apply this framework to real-world problems in different machine learning settings, including classification, regression, and clustering - Learn effective ways of adapting the framework to newer problem settings, such as active learning, model selection, or change detection


Remote Sensing Change Detection

Remote Sensing Change Detection

Author: Ross S. Lunetta

Publisher: CRC Press

Published: 2000-03-01

Total Pages: 350

ISBN-13: 9781575040370

DOWNLOAD EBOOK

This text provides coverage of the fundamentals, the techniques, and the demonstrated results of a variety of projects in a manner accessible to both the novice and the advanced user of remotely sensed data.


Detection of Abrupt Changes

Detection of Abrupt Changes

Author: Michèle Basseville

Publisher:

Published: 1993

Total Pages: 568

ISBN-13:

DOWNLOAD EBOOK

Presents mathematical tools and techniques for solving change detection problems in wide domains like signal processing, controlled systems and monitoring. The book covers a wide class of stochastic processes, including scalar independent observations and multidimensional dependent ARMA.


Encyclopedia of GIS

Encyclopedia of GIS

Author: Shashi Shekhar

Publisher: Springer Science & Business Media

Published: 2007-12-12

Total Pages: 1392

ISBN-13: 038730858X

DOWNLOAD EBOOK

The Encyclopedia of GIS provides a comprehensive and authoritative guide, contributed by experts and peer-reviewed for accuracy, and alphabetically arranged for convenient access. The entries explain key software and processes used by geographers and computational scientists. Major overviews are provided for nearly 200 topics: Geoinformatics, Spatial Cognition, and Location-Based Services and more. Shorter entries define specific terms and concepts. The reference will be published as a print volume with abundant black and white art, and simultaneously as an XML online reference with hyperlinked citations, cross-references, four-color art, links to web-based maps, and other interactive features.


Adaptive Filtering and Change Detection

Adaptive Filtering and Change Detection

Author: Fredrik Gustafsson

Publisher: John Wiley & Sons

Published: 2000-10-03

Total Pages: 520

ISBN-13:

DOWNLOAD EBOOK

Adaptive filtering is a branch of digital signal processing which enables the selective enhancement of desired elements of a signal and the reduction of undesired elements. Change detection is another kind of adaptive filtering for non-stationary signals, and is the basic tool in fault detection and diagnosis. This text takes the unique approach that change detection is a natural extension of adaptive filtering, and the broad coverage encompasses both the mathematical tools needed for adaptive filtering and change detection and the applications of the technology. Real engineering applications covered include aircraft, automotive, communication systems, signal processing and automatic control problems. The unique integration of both theory and practical applications makes this book a valuable resource combining information otherwise only available in separate sources Comprehensive coverage includes many examples and case studies to illustrate the ideas and show what can be achieved Uniquely integrates applications to airborne, automotive and communications systems with the essential mathematical tools Accompanying Matlab toolbox available on the web illustrating the main ideas and enabling the reader to do simulations using all the figures and numerical examples featured This text would prove to be an essential reference for postgraduates and researchers studying digital signal processing as well as practising digital signal processing engineers.


Object-Based Image Analysis

Object-Based Image Analysis

Author: Thomas Blaschke

Publisher: Springer Science & Business Media

Published: 2008-08-09

Total Pages: 804

ISBN-13: 3540770585

DOWNLOAD EBOOK

This book brings together a collection of invited interdisciplinary persp- tives on the recent topic of Object-based Image Analysis (OBIA). Its c- st tent is based on select papers from the 1 OBIA International Conference held in Salzburg in July 2006, and is enriched by several invited chapters. All submissions have passed through a blind peer-review process resulting in what we believe is a timely volume of the highest scientific, theoretical and technical standards. The concept of OBIA first gained widespread interest within the GIScience (Geographic Information Science) community circa 2000, with the advent of the first commercial software for what was then termed ‘obje- oriented image analysis’. However, it is widely agreed that OBIA builds on older segmentation, edge-detection and classification concepts that have been used in remote sensing image analysis for several decades. Nevert- less, its emergence has provided a new critical bridge to spatial concepts applied in multiscale landscape analysis, Geographic Information Systems (GIS) and the synergy between image-objects and their radiometric char- teristics and analyses in Earth Observation data (EO).


Image Analysis, Classification and Change Detection in Remote Sensing

Image Analysis, Classification and Change Detection in Remote Sensing

Author: Morton J. Canty

Publisher: CRC Press

Published: 2014-06-06

Total Pages: 575

ISBN-13: 1466570377

DOWNLOAD EBOOK

Image Analysis, Classification and Change Detection in Remote Sensing: With Algorithms for ENVI/IDL and Python, Third Edition introduces techniques used in the processing of remote sensing digital imagery. It emphasizes the development and implementation of statistically motivated, data-driven techniques. The author achieves this by tightly interweaving theory, algorithms, and computer codes. See What’s New in the Third Edition: Inclusion of extensive code in Python, with a cloud computing example New material on synthetic aperture radar (SAR) data analysis New illustrations in all chapters Extended theoretical development The material is self-contained and illustrated with many programming examples in IDL. The illustrations and applications in the text can be plugged in to the ENVI system in a completely transparent fashion and used immediately both for study and for processing of real imagery. The inclusion of Python-coded versions of the main image analysis algorithms discussed make it accessible to students and teachers without expensive ENVI/IDL licenses. Furthermore, Python platforms can take advantage of new cloud services that essentially provide unlimited computational power. The book covers both multispectral and polarimetric radar image analysis techniques in a way that makes both the differences and parallels clear and emphasizes the importance of choosing appropriate statistical methods. Each chapter concludes with exercises, some of which are small programming projects, intended to illustrate or justify the foregoing development, making this self-contained text ideal for self-study or classroom use.