Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
This book covers the state of the art and recent advances in the field of surface science of a variety of materials for different applications and provides an in-depth understanding of mechanisms involved in achieving the desired surface properties. The book is extremely useful to materials scientists, system design engineers, maintenance engineers, manufacturing experts and executives, industrialists, mechanical engineers, chemical engineers, aeronautical engineers, academic researchers, and undergraduate and postgraduate students.
This book examines nonlinear optical effects in nonlinear nanophotonics, plasmonics, and novel materials for nonlinear optics. It discusses different types of plasmonic excitations such as volume plasmons, localized surface plasmons, and surface plasmon polaritons. It also examines the specific features of nonlinear optical phenomena in plasmonic nanostructures and metamaterials. Chapters cover such topics as applications of nanophotonics, novel materials for nonlinear optics based on nanoparticles, polymers, and photonic glasses.
This book explores functional polymers containing aromatic azo chromophores in side-chain, main-chain and other parts of their structures, known as azo polymers and which share common photoresponsive properties. It focuses on the molecular architecture of azo polymers, the synthetic methods and their most important functions, such as photoinduced birefringence and dichroism, surface-relief-grating (SRG) formation, and light-driven deformation of liquid crystal elastomers. It combines a general survey of the subject and in-depth discussions of each topic, including numerous illustrations, figures, and photographs. Offering a balance between an introduction to the core concepts and a snapshot of hot and emerging topics, it is of interest to graduate students and researchers working in this and related fields. Xiaogong Wang is a Professor at the Department of Chemical Engineering, Tsinghua University, China.
This text examines the design and application of polymeric waveguides and fibers. It discusses new polymer systems designed to expand the efficiency of and the number of applications for polymer waveguides. Topics include graded-index materials, ruggedized systems and dye-doped systems, structure property relations, and new synthetic and processing techniques designed to minimize extrinsic losses.
From the Introduction: Nanotechnology and its underpinning sciences are progressing with unprecedented rapidity. With technical advances in a variety of nanoscale fabrication and manipulation technologies, the whole topical area is maturing into a vibrant field that is generating new scientific research and a burgeoning range of commercial applications, with an annual market already at the trillion dollar threshold. The means of fabricating and controlling matter on the nanoscale afford striking and unprecedented opportunities to exploit a variety of exotic phenomena such as quantum, nanophotonic and nanoelectromechanical effects. Moreover, researchers are elucidating new perspectives on the electronic and optical properties of matter because of the way that nanoscale materials bridge the disparate theories describing molecules and bulk matter. Surface phenomena also gain a greatly increased significance; even the well-known link between chemical reactivity and surface-to-volume ratio becomes a major determinant of physical properties, when it operates over nanoscale dimensions. Against this background, this comprehensive work is designed to address the need for a dynamic, authoritative and readily accessible source of information, capturing the full breadth of the subject. Its six volumes, covering a broad spectrum of disciplines including material sciences, chemistry, physics and life sciences, have been written and edited by an outstanding team of international experts. Addressing an extensive, cross-disciplinary audience, each chapter aims to cover key developments in a scholarly, readable and critical style, providing an indispensible first point of entry to the literature for scientists and technologists from interdisciplinary fields. The work focuses on the major classes of nanomaterials in terms of their synthesis, structure and applications, reviewing nanomaterials and their respective technologies in well-structured and comprehensive articles with extensive cross-references. It has been a constant surprise and delight to have found, amongst the rapidly escalating number who work in nanoscience and technology, so many highly esteemed authors willing to contribute. Sharing our anticipation of a major addition to the literature, they have also captured the excitement of the field itself in each carefully crafted chapter. Along with our painstaking and meticulous volume editors, full credit for the success of this enterprise must go to these individuals, together with our thanks for (largely) adhering to the given deadlines. Lastly, we record our sincere thanks and appreciation for the skills and professionalism of the numerous Elsevier staff who have been involved in this project, notably Fiona Geraghty, Megan Palmer and Greg Harris, and especially Donna De Weerd-Wilson who has steered it through from its inception. We have greatly enjoyed working with them all, as we have with each other.