Geothermal Power Plants

Geothermal Power Plants

Author: Ronald DiPippo

Publisher: Elsevier

Published: 2011-04-08

Total Pages: 518

ISBN-13: 0080554768

DOWNLOAD EBOOK

Ron DiPippo, Professor Emeritus at the University of Massachusetts Dartmouth, is a world-regarded geothermal expert. This single resource covers all aspects of the utilization of geothermal energy for power generation from fundamental scientific and engineering principles. The thermodynamic basis for the design of geothermal power plants is at the heart of the book and readers are clearly guided on the process of designing and analysing the key types of geothermal energy conversion systems. Its practical emphasis is enhanced by the use of case studies from real plants that increase the reader's understanding of geothermal energy conversion and provide a unique compilation of hard-to-obtain data and experience. An important new chapter covers Environmental Impact and Abatement Technologies, including gaseous and solid emissions; water, noise and thermal pollutions; land usage; disturbance of natural hydrothermal manifestations, habitats and vegetation; minimisation of CO2 emissions and environmental impact assessment.The book is illustrated with over 240 photographs and drawings. Nine chapters include practice problems, with solutions, which enable the book to be used as a course text. Also includes a definitive worldwide compilation of every geothermal power plant that has operated, unit by unit, plus a concise primer on the applicable thermodynamics.* Engineering principles are at the heart of the book, with complete coverage of the thermodynamic basis for the design of geothermal power systems* Practical applications are backed up by an extensive selection of case studies that show how geothermal energy conversion systems have been designed, applied and exploited in practice* World renowned geothermal expert DiPippo has including a new chapter on Environmental Impact and Abatement Technology in this new edition


Polygeneration Systems

Polygeneration Systems

Author: Francesco Calise

Publisher: Academic Press

Published: 2021-09-22

Total Pages: 453

ISBN-13: 0128206268

DOWNLOAD EBOOK

The support for polygeneration lies in the possibility of integrating different technologies into a single energy system, to maximize the utilization of both fossil and renewable fuels. A system that delivers multiple forms of energy to users, maximizing the overall efficiency makes polygeneration an emerging and viable option for energy consuming industries. Polygeneration Systems: Design, Processes and Technologies provides simple and advanced calculation techniques to evaluate energy, environmental and economic performance of polygeneration systems under analysis. With specific design guidelines for each type of polygeneration system and experimental performance data, referred both to single components and overall systems, this title covers all aspects of polygeneration from design to operation, optimization and practical implementation. Giving different aspects of both fossil and non-fossil fuel based polygeneration and the wider area of polygeneration processes, this book helps readers learn general principles to specific system design and development through analysis of case studies, examples, simulation characteristics and thermodynamic and economic data. - Detailed economic data for technology to assist developing feasibility studies regarding the possible application of polygeneration technologies - Offers a comprehensive list of all current numerical and experimental results of polygeneration available - Includes simulation models, cost figures, demonstration projects and test standards for designers and researchers to validate their own models and/or to test the reliability of their results


Organic Rankine Cycle (ORC) Power Systems

Organic Rankine Cycle (ORC) Power Systems

Author: Ennio Macchi

Publisher: Woodhead Publishing

Published: 2016-08-24

Total Pages: 700

ISBN-13: 0081005113

DOWNLOAD EBOOK

Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications provides a systematic and detailed description of organic Rankine cycle technologies and the way they are increasingly of interest for cost-effective sustainable energy generation. Popular applications include cogeneration from biomass and electricity generation from geothermal reservoirs and concentrating solar power installations, as well as waste heat recovery from gas turbines, internal combustion engines and medium- and low-temperature industrial processes. With hundreds of ORC power systems already in operation and the market growing at a fast pace, this is an active and engaging area of scientific research and technical development. The book is structured in three main parts: (i) Introduction to ORC Power Systems, Design and Optimization, (ii) ORC Plant Components, and (iii) Fields of Application. - Provides a thorough introduction to ORC power systems - Contains detailed chapters on ORC plant components - Includes a section focusing on ORC design and optimization - Reviews key applications of ORC technologies, including cogeneration from biomass, electricity generation from geothermal reservoirs and concentrating solar power installations, waste heat recovery from gas turbines, internal combustion engines and medium- and low-temperature industrial processes - Various chapters are authored by well-known specialists from Academia and ORC manufacturers


Comprehensive Energy Systems

Comprehensive Energy Systems

Author: Ibrahim Dincer

Publisher: Elsevier

Published: 2018-02-07

Total Pages: 5543

ISBN-13: 0128149256

DOWNLOAD EBOOK

Comprehensive Energy Systems, Seven Volume Set provides a unified source of information covering the entire spectrum of energy, one of the most significant issues humanity has to face. This comprehensive book describes traditional and novel energy systems, from single generation to multi-generation, also covering theory and applications. In addition, it also presents high-level coverage on energy policies, strategies, environmental impacts and sustainable development. No other published work covers such breadth of topics in similar depth. High-level sections include Energy Fundamentals, Energy Materials, Energy Production, Energy Conversion, and Energy Management. Offers the most comprehensive resource available on the topic of energy systems Presents an authoritative resource authored and edited by leading experts in the field Consolidates information currently scattered in publications from different research fields (engineering as well as physics, chemistry, environmental sciences and economics), thus ensuring a common standard and language


Steam Generators and Waste Heat Boilers

Steam Generators and Waste Heat Boilers

Author: V. Ganapathy

Publisher: CRC Press

Published: 2014-10-10

Total Pages: 544

ISBN-13: 1482247127

DOWNLOAD EBOOK

Incorporates Worked-Out Real-World Problems Steam Generators and Waste Heat Boilers: For Process and Plant Engineers focuses on the thermal design and performance aspects of steam generators, HRSGs and fire tube, water tube waste heat boilers including air heaters, and condensing economizers. Over 120 real-life problems are fully worked out which will help plant engineers in evaluating new boilers or making modifications to existing boiler components without assistance from boiler suppliers. The book examines recent trends and developments in boiler design and technology and presents novel ideas for improving boiler efficiency and lowering gas pressure drop. It helps plant engineers understand and evaluate the performance of steam generators and waste heat boilers at any load. Learn How to Independently Evaluate the Thermal Performance of Boilers and Their Components This book begins with basic combustion and boiler efficiency calculations. It then moves on to estimation of furnace exit gas temperature (FEGT), furnace duty, view factors, heat flux, and boiler circulation calculations. It also describes trends in large steam generator designs such as multiple-module; elevated drum design types of boilers such as D, O, and A; and forced circulation steam generators. It illustrates various options to improve boiler efficiency and lower operating costs. The author addresses the importance of flue gas analysis, fire tube versus water tube boilers used in chemical plants, and refineries. In addition, he describes cogeneration systems; heat recovery in sulfur plants, hydrogen plants, and cement plants; and the effect of fouling factor on performance. The book also explains HRSG simulation process and illustrates calculations for complete performance evaluation of boilers and their components. Helps plant engineers make independent evaluations of thermal performance of boilers before purchasing them Provides numerous examples on boiler thermal performance calculations that help plant engineers develop programming codes with ease Follows the metric and SI system, and British units are shown in parentheses wherever possible Includes calculation procedures for the basic sizing and performance evaluation of a complete steam generator or waste heat boiler system and their components with appendices outlining simplified procedures for estimation of heat transfer coefficients Steam Generators and Waste Heat Boilers: For Process and Plant Engineers serves as a source book for plant engineers, consultants, and boiler designers.


Sustainable Design for Renewable Processes

Sustainable Design for Renewable Processes

Author: Mariano Martin

Publisher: Elsevier

Published: 2021-10-31

Total Pages: 685

ISBN-13: 0128243252

DOWNLOAD EBOOK

Sustainable Design for Renewable Processes: Principles and Case Studies covers the basic technologies to collect and process renewable resources and raw materials and transform them into useful products. Starting with basic principles on process analysis, integration and optimization that also addresses challenges, the book then discusses applied principles using a number of examples and case studies that cover biomass, waste, solar, water and wind as resources, along with a set of technologies including gasification, pyrolysis, hydrolysis, digestion, fermentation, solar thermal, solar photovoltaics, electrolysis, energy storage, etc. The book includes examples, exercises and models using Python, Julia, MATLAB, GAMS, EXCEL, CHEMCAD or ASPEN. This book shows students the challenges posed by renewable-based processes by presenting fundamentals, case studies and step-by-step analyses of renewable resources. Hence, this is an ideal and comprehensive reference for Masters and PhD students, engineers and designers. - Addresses the fundamentals and applications of renewable energy process design for all major resources, including biomass, solar, wind, geothermal, waste and water - Provides detailed case studies, step-by-step instructions, and guidance for each renewable energy technology - Presents models and simulations for a wide variety of platforms, including state-of-the-art and open access platforms in addition to well-known commercial software


Geothermal Energy Utilization and Technologies 2020

Geothermal Energy Utilization and Technologies 2020

Author: Carlo Roselli

Publisher: MDPI

Published: 2021-08-31

Total Pages: 350

ISBN-13: 3036507043

DOWNLOAD EBOOK

Rising pollution, climate change and the depletion of fossil fuels are leading many countries to focus on renewable-based energy conversion systems. In particular, recently introduced energy policies are giving high priority to increasing the use of renewable energy sources, the improvement of energy systems’ security, the minimization of greenhouse gas effect, and social and economic cohesion. Renewable energies’ availability varies during the day and the seasons and so their use must be accurately predicted in conjunction with the management strategies based on load shifting and energy storage. Thus, in order to reduce the criticalities of this uncertainty, the exploitation of more flexible and stable renewable energies, such as the geothermal one, is necessary. Geothermal energy is an abundant renewable source with significant potential in direct use applications, such as in district heating systems, in indirect use ones to produce electricity, and in cogeneration and polygeneration systems for the combined production of power, heating, and cooling energy. This Special Issue includes geothermal energy utilization and the technologies used for its exploitation considering both the direct and indirect use applications.


Thermal Systems

Thermal Systems

Author: Ivan CK Tam

Publisher: MDPI

Published: 2021-04-07

Total Pages: 190

ISBN-13: 3039438417

DOWNLOAD EBOOK

We live in interesting times in which life as we know it is being threatened by manmade changes to the atmosphere in which we live. On the global scale, concern is focused on climate change due to greenhouse gas emissions, and on a national scale, atmospheric pollution produced by combustion processes is of concern. A possible approach is through the development of new ideas and innovative processes to the current practices. Among the available options, multi-generation processes such as the trigeneration cycle, battery storage system, solar power plants and heat pumps have been widely studied, as they potentially allow for greater efficiency, lower costs, and reduced emissions. On the other hand, some researchers had been working to increase the potential of energy generation process through heat recovery under the steam generator, organic Rankine cycle, and absorption chillers. In this Special Issue on "Thermal Systems” of fundamental or applied and numerical or experimental investigation, many new concepts in thermal systems and energy utilization were explored and published as original research papers in this “Special Issue”.


Optimization of Energy Systems

Optimization of Energy Systems

Author: Ibrahim Din¿er

Publisher: John Wiley & Sons

Published: 2017-05-15

Total Pages: 484

ISBN-13: 111889443X

DOWNLOAD EBOOK

An essential resource for optimizing energy systems to enhance design capability, performance and sustainability Optimization of Energy Systems comprehensively describes the thermodynamic modelling, analysis and optimization of numerous types of energy systems in various applications. It provides a new understanding of the system and the process of defining proper objective functions for determination of the most suitable design parameters for achieving enhanced efficiency, cost effectiveness and sustainability. Beginning with a general summary of thermodynamics, optimization techniques and optimization methods for thermal components, the book goes on to describe how to determine the most appropriate design parameters for more complex energy systems using various optimization methods. The results of each chapter provide potential tools for design, analysis, performance improvement, and greenhouse gas emissions reduction. Key features: Comprehensive coverage of the modelling, analysis and optimization of many energy systems for a variety of applications. Examples, practical applications and case studies to put theory into practice. Study problems at the end of each chapter that foster critical thinking and skill development. Written in an easy-to-follow style, starting with simple systems and moving to advanced energy systems and their complexities. A unique resource for understanding cutting-edge research in the thermodynamic analysis and optimization of a wide range of energy systems, Optimization of Energy Systems is suitable for graduate and senior undergraduate students, researchers, engineers, practitioners, and scientists in the area of energy systems.