Linear Feedback Control

Linear Feedback Control

Author: Dingyu Xue

Publisher: SIAM

Published: 2007-01-01

Total Pages: 366

ISBN-13: 9780898718621

DOWNLOAD EBOOK

This book discusses analysis and design techniques for linear feedback control systems using MATLAB® software. By reducing the mathematics, increasing MATLAB working examples, and inserting short scripts and plots within the text, the authors have created a resource suitable for almost any type of user. The book begins with a summary of the properties of linear systems and addresses modeling and model reduction issues. In the subsequent chapters on analysis, the authors introduce time domain, complex plane, and frequency domain techniques. Their coverage of design includes discussions on model-based controller designs, PID controllers, and robust control designs. A unique aspect of the book is its inclusion of a chapter on fractional-order controllers, which are useful in control engineering practice.


Feedback Control Theory

Feedback Control Theory

Author: John C. Doyle

Publisher: Courier Corporation

Published: 2013-04-09

Total Pages: 264

ISBN-13: 0486318338

DOWNLOAD EBOOK

An excellent introduction to feedback control system design, this book offers a theoretical approach that captures the essential issues and can be applied to a wide range of practical problems. Its explorations of recent developments in the field emphasize the relationship of new procedures to classical control theory, with a focus on single input and output systems that keeps concepts accessible to students with limited backgrounds. The text is geared toward a single-semester senior course or a graduate-level class for students of electrical engineering. The opening chapters constitute a basic treatment of feedback design. Topics include a detailed formulation of the control design program, the fundamental issue of performance/stability robustness tradeoff, and the graphical design technique of loopshaping. Subsequent chapters extend the discussion of the loopshaping technique and connect it with notions of optimality. Concluding chapters examine controller design via optimization, offering a mathematical approach that is useful for multivariable systems.


Control System Design

Control System Design

Author: Bernard Friedland

Publisher: Courier Corporation

Published: 2012-03-08

Total Pages: 530

ISBN-13: 048613511X

DOWNLOAD EBOOK

Introduction to state-space methods covers feedback control; state-space representation of dynamic systems and dynamics of linear systems; frequency-domain analysis; controllability and observability; shaping the dynamic response; more. 1986 edition.


Control System Design

Control System Design

Author: Graham Clifford Goodwin

Publisher: Pearson

Published: 2001

Total Pages: 952

ISBN-13:

DOWNLOAD EBOOK

For both undergraduate and graduate courses in Control System Design. Using a "how to do it" approach with a strong emphasis on real-world design, this text provides comprehensive, single-source coverage of the full spectrum of control system design. Each of the text's 8 parts covers an area in control--ranging from signals and systems (Bode Diagrams, Root Locus, etc.), to SISO control (including PID and Fundamental Design Trade-Offs) and MIMO systems (including Constraints, MPC, Decoupling, etc.).


Quantitative Feedback Design of Linear and Nonlinear Control Systems

Quantitative Feedback Design of Linear and Nonlinear Control Systems

Author: Oded Yaniv

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 382

ISBN-13: 147576331X

DOWNLOAD EBOOK

Quantitative Feedback Design of Linear and Nonlinear Control Systems is a self-contained book dealing with the theory and practice of Quantitative Feedback Theory (QFT). The author presents feedback synthesis techniques for single-input single-output, multi-input multi-output linear time-invariant and nonlinear plants based on the QFT method. Included are design details and graphs which do not appear in the literature, which will enable engineers and researchers to understand QFT in greater depth. Engineers will be able to apply QFT and the design techniques to many applications, such as flight and chemical plant control, robotics, space, vehicle and military industries, and numerous other uses. All of the examples were implemented using Matlab® Version 5.3; the script file can be found at the author's Web site. QFT results in efficient designs because it synthesizes a controller for the exact amount of plant uncertainty, disturbances and required specifications. Quantitative Feedback Design of Linear and Nonlinear Control Systems is a pioneering work that illuminates QFT, making the theory - and practice - come alive.


Feedback Systems

Feedback Systems

Author: Karl Johan Åström

Publisher: Princeton University Press

Published: 2021-02-02

Total Pages:

ISBN-13: 069121347X

DOWNLOAD EBOOK

The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory


Feedback Control of Dynamic Systems Int

Feedback Control of Dynamic Systems Int

Author: J. David Powell

Publisher: Pearson Academic Computing

Published: 2012-06

Total Pages:

ISBN-13: 9781447935377

DOWNLOAD EBOOK

This text covers the material that every engineer, and most scientists and prospective managers, needs to know about feedback control, including concepts like stability, tracking, and robustness. Each chapter presents the fundamentals along with comprehensive, worked-out examples, all within a real-world context.


Control System Design Guide

Control System Design Guide

Author: George Ellis

Publisher: Butterworth-Heinemann

Published: 2012-05-15

Total Pages: 521

ISBN-13: 0123859204

DOWNLOAD EBOOK

This title will help engineers to apply control theory to practical systems using their PC. It provides an intuitive approach to controls, avoiding unecessary math and emphasising key concepts with control system models


Design of Modern Control Systems

Design of Modern Control Systems

Author: David John Bell

Publisher: IET

Published: 1982

Total Pages: 348

ISBN-13: 9780906048740

DOWNLOAD EBOOK

The book reviews developments in the following fields: state-space theory; complex variable methods in feedback system analysis and design; robustness in variable control system design; design study using the characteristic locus method; inverse Nyquist array design method; nuclear boiler control scheme analysis and design; optimal control; control system design via mathematical programming; multivariable design optimisation; pole assignment; nonlinear systems; DDC system design; robust controller design; distributed parameter system control; and decentralised control.