Design of Electrical Transmission Lines

Design of Electrical Transmission Lines

Author: Sriram Kalaga

Publisher: CRC Press

Published: 2016-12-19

Total Pages: 563

ISBN-13: 1317627903

DOWNLOAD EBOOK

This book covers structural and foundation systems used in high-voltage transmission lines, conductors, insulators, hardware and component assembly. In most developing countries, the term “transmission structures” usually means lattice steel towers. The term actually includes a vast range of structural systems and configurations of various materials such as wood, steel, concrete and composites. This book discusses those systems along with associated topics such as structure functions and configurations, load cases for design, analysis techniques, structure and foundation modeling, design deliverables and latest advances in the field. In the foundations section, theories related to direct embedment, drilled shaf ts, spread foundations and anchors are discussed in detail. Featuring worked out design problems for students, the book is aimed at students, practicing engineers, researchers and academics. It contains beneficial information for those involved in the design and maintenance of transmission line structures and foundations. For those in academia, it will be an adequate text-book / design guide for graduate-level courses on the topic. Engineers and managers at utilities and electrical corporations will find the book a useful reference at work.


The Design, Construction, and Operation of Long-distance High-voltage Electricity Transmission Technologies

The Design, Construction, and Operation of Long-distance High-voltage Electricity Transmission Technologies

Author:

Publisher:

Published: 2008

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

This report focuses on transmission lines, which operate at voltages of 115 kV and higher. Currently, the highest voltage lines comprising the North American power grid are at 765 kV. The grid is the network of transmission lines that interconnect most large power plants on the North American continent. One transmission line at this high voltage was built near Chicago as part of the interconnection for three large nuclear power plants southwest of the city. Lines at this voltage also serve markets in New York and New England, also very high demand regions. The large power transfers along the West Coast are generally at 230 or 500 kV. Just as there are practical limits to centralization of power production, there are practical limits to increasing line voltage. As voltage increases, the height of the supporting towers, the size of the insulators, the distance between conductors on a tower, and even the width of the right-of-way (ROW) required increase. These design features safely isolate the electric power, which has an increasing tendency to arc to ground as the voltage (or electrical potential) increases. In addition, very high voltages (345 kV and above) are subject to corona losses. These losses are a result of ionization of the atmosphere, and can amount to several megawatts of wasted power. Furthermore, they are a local nuisance to radio transmission and can produce a noticeable hum. Centralized power production has advantages of economies of scale and special resource availability (for instance, hydro resources), but centralized power requires long-distance transfers of power both to reach customers and to provide interconnections for reliability. Long distances are most economically served at high voltages, which require large-scale equipment and impose a substantial footprint on the corridors through which power passes. The most visible components of the transmission system are the conductors that provide paths for the power and the towers that keep these conductors at a safe distance from each other and from the ground and the natural and built environment. Common elements that are generally less visible (or at least more easily overlooked) include the maintained ROW along the path of the towers, access roads needed for maintenance, and staging areas used for initial construction that may be restored after construction is complete. Also visible but less common elements along the corridor may include switching stations or substations, where lines of similar or different voltages meet to transfer power.


Power System Harmonics and Passive Filter Designs

Power System Harmonics and Passive Filter Designs

Author: J. C. Das

Publisher: John Wiley & Sons

Published: 2015-02-24

Total Pages: 872

ISBN-13: 1119035724

DOWNLOAD EBOOK

As new technologies are created and advances are made with the ongoing research efforts, power system harmonics has become a subject of great interest. The author presents these nuances with real-life case studies, comprehensive models of power system components for harmonics, and EMTP simulations. Comprehensive coverage of power system harmonics Presents new harmonic mitigation technologies In-depth analysis of the effects of harmonics Foreword written by Dr. Jean Mahseredijan, world renowned authority on simulations of electromagnetic transients and harmonics


Electrical Transmission Line and Substation Structures

Electrical Transmission Line and Substation Structures

Author: Robert E. Nickerson

Publisher:

Published: 2007

Total Pages: 426

ISBN-13:

DOWNLOAD EBOOK

This collection contains 36 papers on structural issues in the electrical transmission industry that were presented at the 2006 Electrical Transmission Conference, held in Birmingham, Alabama, October 15-19, 2006.