Design and Optimization of Biogas Energy Systems

Design and Optimization of Biogas Energy Systems

Author: Prashant Baredar

Publisher: Academic Press

Published: 2020-06-18

Total Pages: 337

ISBN-13: 0128227192

DOWNLOAD EBOOK

Design and Optimization of Biogas Energy Systems presents an overview on planning, implementing, assessing and optimizing biogas systems, from fuel conversion to power generation. The book introduces the fundamental elements of bioenergy systems, highlighting the specificities of biogas systems. It discusses the current state of their adoption at a global level and the challenges faced by designers and operators. Methods for sizing, simulating and modeling are discussed, including prefeasibility analysis, available production processes, integration into hybrid energy systems, and the application of Big Data analysis and game theory concepts. All chapters include real-life examples and exercises to illustrate the topics being covered. The book goes beyond theory to offer practical knowledge of methods to reach solutions to key challenges in the field. This is a valuable resource for researchers, practitioners and graduate students interested in developing smart, reliable and sustainable biogas technologies. Provides an applied approach to biogas systems, from technology fundamentals, to economic and environmental assessment Explores control methods and reliability prediction of each system component, including modeling and simulation with HOMER and MATLAB Discusses the use of Big Data analysis, numerical methods, and Game Theory for plant assessment


System studies of biogas production

System studies of biogas production

Author: Emma Lindkvist

Publisher: Linköping University Electronic Press

Published: 2020-04-29

Total Pages: 73

ISBN-13: 917929832X

DOWNLOAD EBOOK

Biogas has the potential to be part of the transition towards a more sustainable energy system. Biogas is a renewable energy source and can play an important role in modern waste management systems. Biogas production can also help recirculate nutrients back to farmland. Besides all this, biogas is a locally produced energy source with the potential to increase global resource efficiency, since it can lead to more value and less waste, as well as decreased negative environmental effects. However, biogas production systems are complex, including different substrates, different applications for biogas and digestate, and different technology solutions for digestion, pre-treatment and for upgrading the raw gas. To increase the development of biogas production systems, knowledge sharing is a key factor. To increase this knowledge sharing, comprehensible analysis and comparisons of biogas production systems are necessary. Thus, studies are needed to verify the resource efficiency of biogas production systems from different perspectives. The aim of this thesis is to perform a systems analysis of biogas production systems and to explore how to analyse and compare biogas production systems. An additional aim is to study biogas production systems from a systems perspective, with a focus on environment, energy and economy. Studying biogas production systems from different system levels, as well as from different approaches, is beneficial because it results in deeper knowledge of biogas systems and greater opportunities to identify synergies. Systems studies of biogas are important, since biogas systems are often complex and integrated with other systems. In this thesis, biogas systems analyses are performed at different levels. In the widest system study, classifications of different biogas plants are analysed and classifications in different European countries are compared, with the prospect of paving the way for a new common classification for biogas plants in Europe. Today, classifications vary between countries, and hence comparisons of plants in different countries are difficult. In the narrowest system study, a new methodology for analysing energy demand at different biogas production plants has been developed. The aim was to develop a methodology that is applicable for all kinds of biogas plants with energy inputs. The methodology describes the process of analysing energy demand and allocating energy to sub-processes and unit processes. Further, an approach for assessing the resource efficiency of different treatment options for organic waste was designed. The approach includes environmental, economic and energy perspectives, and was applied to five different regions with several food manufacturing companies. A study of treatment options for organic waste from a single food company was also conducted. The results showed that biogas production is a resource-efficient way to treat waste from the food industry. The approach enables a wider analysis of biogas systems, and the results from the applications show the complexity of assessing resource efficiency. It is also shown that it is important to understand that the resource efficiency of a system is always in relation to the substituted system. In this thesis, three different approaches to analysing biogas production systems are presented: categorization, resource efficiency analysis and energy demand analysis. These approaches all contribute to the understanding of biogas systems and can help, in different ways, to increase knowledge about biogas systems in the world. If knowledge about different biogas systems can be easily disseminated, more of the unused potential of biogas production may be realized, and hence more fossil fuels can be replaced within the energy system. Biogas har potentialen att vara en del av övergången till ett mer hållbart energisystem. Biogas är en förnybar energikälla som kan spela en viktig roll i moderna avfallshanteringssystem. Produktion av biogas kan även hjälpa till att återcirkulera näringsämnen tillbaka till jordbruksmark. Förutom allt detta är biogas en lokalt producerad energikälla med potential att öka resurseffektiviteten i världen, eftersom det kan leda till ökat värde och mindre avfall samt minskade negativa miljöeffekter. Dock är biogasproduktionssystem komplexa, inklusive exempelvis olika substrat, användning för biogasen och rötresterna, olika tekniska lösningar för rötresterna såväl som förbehandling av substrat och uppgradering av rågas. För att öka utvecklingen av biogasproduktionssystem är kunskapsdelning en nyckelfaktor. För att öka kunskapsdelningen är tydliga analyser och jämförelser av biogasproduktionssystem nödvändiga. Därför behövs studier för att verifiera resurseffektiviteten för biogasproduktionssystem från olika perspektiv. Syftet med denna avhandling är att utföra systemanalyser av biogasproduktionssystem och att undersöka hur man analyserar och jämför biogasproduktionssystem. Vidare är syftet också att studera biogasproduktionssystem ur ett systemperspektiv med fokus på miljö, energi och ekonomi. Det är fördelaktigt att studera biogasproduktionssystem på olika systemnivåer och utifrån olika tillvägagångssätt, eftersom kunskapen om biogassystem fördjupas och möjligheterna att hitta synergier ökar. Systemstudier av biogas är viktigt eftersom biogassystem ofta är komplexa och integrerade i andra system. I denna avhandling utförs analyser på olika nivåer av biogassystemen. På den högsta systemnivån analyseras klassificeringar av olika biogasanläggningar. Klassificeringar i olika europeiska länder jämförs, med förhoppningen att bana väg mot en ny, gemensam klassificering för biogasanläggningar i Europa. Idag varierar klassificeringarna mellan länder och därför är jämförelser av anläggningar mellan länder svåra. På den lägsta systemnivån utvecklades en ny metod för analys av energibehov vid olika biogasproduktionsanläggningar. Syftet var att utveckla en metod för alla typer av biogasanläggningar. Metodiken beskriver processen för att analysera energibehov och fördela energin till delprocesser och enhetsprocesser. Vidare utformades en metod för att bedöma resurseffektiviteten hos olika behandlingsalternativ för organiskt avfall. Metoden inkluderar miljö, ekonomi och energi och tillämpades i fem olika regioner med flera livsmedelsindustriföretag. En studie av behandlingsalternativ för organiskt avfall från ett enda livsmedelsföretag genomfördes också. Resultaten visade att biogasproduktion är ett resurseffektivt sätt att behandla avfall från livsmedelsindustrin. Metoden möjliggör en bredare analys av biogassystem och resultaten från tillämpningarna visar komplexiteten i att utvärdera resurseffektiviteten. Det visas också att det är viktigt att förstå att ett systems resurseffektivitet alltid är i förhållande till det substituerade systemet. I denna avhandling presenteras tre olika metoder för analys av biogasproduktionssystem: kategorisering, resurseffektivitetsanalys och energibehovsanalys. Dessa tillvägagångssätt bidrar alla till att förstå biogassystem och kan på olika sätt bidra till att öka kunskapen för biogassystem i världen. Med bra system för att sprida kunskap om olika biogassystem kan mer av den outnyttjade potentialen för biogasproduktion realiseras och därmed kan fler fossila bränslen i energisystemet ersättas, samtidigt som de övriga fördelarna med biogas också kommer samhället till nytta.


Biogas

Biogas

Author: Meisam Tabatabaei

Publisher: Springer

Published: 2018-04-19

Total Pages: 471

ISBN-13: 3319773356

DOWNLOAD EBOOK

This book presents the state of the art in biogas production using anaerobic digestion technology, with an emphasis on waste utilization/valorization. Offering a comprehensive reference guide to biogas production from different waste streams, it covers various aspects of anaerobic digestion technology from the basics, i.e., microbiological aspects to prominent parameters governing biogas production systems, as well as major principles of their operation, analysis, process control, and troubleshooting. Written and edited by internationally recognized experts in the field of biogas production from both academia and industry, it provides in-depth and cutting-edge information on central developments in the field. In addition, it discusses and reviews major issues affecting biogas production, including the type of feedstock, pretreatment techniques, production systems, design and fabrication of biogas plants, as well as biogas purification and upgrading technologies. ‘Biogas: Fundamentals, Process, and Operation’ also addresses the application of advanced environmental and energy evaluation tools including life cycle assessment (LCA), exergy, techno-economics, and modeling techniques. This book is intended for all researchers, practitioners and students who are interested in the current trends and future prospects of biogas production technologies.


Biogas Systems

Biogas Systems

Author: K. M. Mital

Publisher: Taylor & Francis

Published: 1997

Total Pages: 304

ISBN-13: 9788122411041

DOWNLOAD EBOOK

This Book Is Written With Special Focus On Issues Relating To Policies And Strategies For Planning And Implementation Of Biogas Programme. The Book Provides A Detailed Overview Of Biogas Technology Covering All The Facets. It Provides Comprehensive History And Progress Of Biomethanation In Select Countries And Regions Where It Has Made Special Mark. It Provides A Detailed Overview Of Developments In India Covering Historical Perspectives, Biogas Potential, Chronological Progress Of Biomethanation, And Enumerates References Made To Biogas At Important Seminars And Conferences By Eminent Personalities From India And Abroad. It Comprehensively Spells Out Various Implementation Strategies Particularly The Turnkey Approach Which Is Largely Responsible For Bringing Biogas Revolution In India Judging By The Unprecedented Spurt In The Number Of Biogas Plants Installed In Recent Years.It Consolidates The Findings And Recommendations Of Several Socio-Economic Surveys On Biomethanation Undertaken In Past In India From Time To Time. It Presents Case-Studies Of Several Community Biogas Plants Which Have Greatly Helped In Improving The Rural Economy. It Also Provides An Overview Of Energy Needs Of Developing Countries, Reviews Integrated Rural Energy Programme (Irep) And The Urjagram Programmes Of The Union Government As Supportive Programmes For Biomethanation, And Views Biogas Programme As An Instrument Of Sustainable Development. It Discusses At Length The Economics And Cost- Effectiveness Of Biogas Systems.The Book Also Identifies Areas For Further Studies And Looks Forward That Biomethanation Will Scale New Eights Even When The Subsidies Are Completely Withdrawn And Market-Driven Approach Under The New Economic Policy Governs The Biogas Programme. In Short, The Book Covers All Related Aspects Involving Policies, Progress And Prospects Of Biomethanation In India And Abroad.


The Biogas Handbook

The Biogas Handbook

Author: Arthur Wellinger

Publisher: Elsevier

Published: 2013-02-19

Total Pages: 504

ISBN-13: 0857097415

DOWNLOAD EBOOK

With pressure increasing to utilise wastes and residues effectively and sustainably, the production of biogas represents one of the most important routes towards reaching national and international renewable energy targets. The biogas handbook: Science, production and applications provides a comprehensive and systematic guide to the development and deployment of biogas supply chains and technology. Following a concise overview of biogas as an energy option, part one explores biomass resources and fundamental science and engineering of biogas production, including feedstock characterisation, storage and pre-treatment, and yield optimisation. Plant design, engineering, process optimisation and digestate utilisation are the focus of part two. Topics considered include the engineering and process control of biogas plants, methane emissions in biogas production, and biogas digestate quality, utilisation and land application. Finally, part three discusses international experience and best practice in biogas utilisation. Biogas cleaning and upgrading to biomethane, biomethane use as transport fuel and the generation of heat and power from biogas for stationery applications are all discussed. The book concludes with a review of market development and biomethane certification schemes. With its distinguished editors and international team of expert contributors, The biogas handbook: Science, production and applications is a practical reference to biogas technology for process engineers, manufacturers, industrial chemists and biochemists, scientists, researchers and academics working in this field. Provides a concise overview of biogas as an energy option Explores biomass resources for production Examines plant design and engineering and process optimisation


Biogas Technology, Transfer and Diffusion

Biogas Technology, Transfer and Diffusion

Author: Mahmoud M. El-Halwagi

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 735

ISBN-13: 940094313X

DOWNLOAD EBOOK

The International Conference on the State of the Art on Biogas Technology, Transfer and Diffusion was held in Cairo, Egypt, from 17 to 24 November 1984. The Conference was organized by the Egyptian Academy of Scientific Research and Technology (ASR T), the Egyptian National Research Centre (NRC), the Bioenergy Systems and Technology project (BST) of the US Agency for International Development (US/AID) Office of Energy, and the National Academy of Sciences (NAS). A number of international organizations and agencies co-sponsored the Conference. More than 100 participants from 40 countries attended. The purpose of the Conference was to assess the viability of biogas technology (BGT) and propose future courses of action for exploiting BGT prospects to the fullest extent. The Conference emphasized a balanced coverage of technical, environ mental, social, economic and organizational aspects relevant to biogas systems design, operation and diffusion. It was organized to incorporate experiences that are pertinent, for the most part, to developing countries. In addition to the wide spectrum of presentations and country programs, structured and non-structured discussions among the participants were strongly encouraged in thematic sessions at round-table discussions, and through personal contacts during poster sessions and field trips. It was clear from the enthusiastic response of most participants that the Conference, in large measure, succeeded in fulfilling its mission. Although draft papers were distributed to all participants, it was felt that the results obtained were worthy of organized and refined documentation. And this is precisely what this book intends to do.


Designing Renewable Energy Systems

Designing Renewable Energy Systems

Author: Leda Gerber

Publisher: CRC Press

Published: 2014-12-23

Total Pages: 226

ISBN-13: 1498711286

DOWNLOAD EBOOK

The book discusses a multi-objective optimization approach in LCA that allows the flexible construction of comprehensive Pareto fronts to help understand the weightings and relative importance of its elements. The methodology is applied to the pertinent topics of thermochemical wood conversion, deep geothermal energy, and regional energy planning.


Optimization, Design and Construction of an Experimental Biogas System in a Small Dairy in Colombia

Optimization, Design and Construction of an Experimental Biogas System in a Small Dairy in Colombia

Author: Juan Alvaro Gil Donato

Publisher:

Published: 2016

Total Pages: 256

ISBN-13:

DOWNLOAD EBOOK

With the global population reaching approximately 9.7 billion by 2050, questions on how life's necessities - food, energy, water, and infrastructure - will be supplied are becoming more relevant. These necessities generate specific challenges and demand prompt and appropriate solutions. Energy, with its ability to power cities, industry, rural farms, and everyday households, poses a challenge to many regions of the world, especially to those populations located outside major metropolises. This is part of the reason why the development and implementation of alternative energies are being held in the forefront of affordable sustainability. Alternative energies have already played a critical role in today's world by providing on-site energy generation with the adoption of different technologies. For example, anaerobic digestion (AD) is a technology that is being employed by rural communities in emerging countries to improve the quality of life. This alternative technology offers several benefits that could address some of the energy and environmental needs that these communities have incurred. Among those benefits, AD provides clean fuel for cooking, heating, and electricity generation. It is also used to treat wastewater, capture greenhouse gases (GHGs), and produce as an excellent fertilizer for crops. These benefits are more evident in agricultural operations where biomass residues can be used to generate heating or electric energy while offsetting part or all of the operational costs. Biogas systems can be a practical and cost-effective solution to energy generation, allowing small, remote, urban, or rural communities to establish and take full advantage of the benefits. Countries all over the world are promoting and incentivizing rural communities and farms to adopt and utilize this technology, substituting electricity, propane, butane, natural gas, and kerosene. Several countries in Central and South America are implementing AD on a smaller scale compared with eastern countries, normally encouraged by private and public initiatives. Colombia, as an example, is working on determining whether alternative energies should be heavily promoted and subsidized, and if programs encouraging and facilitating people to adopt renewable energies should be carried out. Several challenging factors of this technology need to be addressed to guarantee its success in the most demanding conditions. Currently, most of these solutions are neither cost-effective nor practical. Biogas systems in Colombia have been adopted, mostly by small and medium agricultural operations to generate biogas. However, the extent of the technology implementation is not known. One of the objectives of the World Bank, World Health Organization and United Nations Environmental Programme is to reduce the reliance on fuel wood as a heating and cooking system. The use of indoor biomass as a fuel has been attributed to respiratory illness at an estimated loss in human productivity of 110 million disability-adjusted life years (Putti, Tsan, Mehta, and Kammila, 2015). Exposure of children to wood and other biomass burning fumes can result in long-term respiratory illness (WHO, 2012). Due to the rural demographics and availability of costly traditional alternative energy sources being limited, biogas offers a healthy and cost-effective alternative to the traditional wood fuel option. The purpose of this research was to design an optimized, rugged, cost-effective, weather-resistant, low-maintenance biogas system, capable of withstanding UV degradation, and be puncture-resistant while staying cost-effective and easy to use and maintain. The dairy sector was selected due to its location in rural distribution, high organic content load, and large amount of water use, making it a perfect candidate for anaerobic digestion. This research project was composed of three components: (1) an evaluation phase, to determine the best concentration of solids to water ratio, (2) an optimization phase, to determine how physical chemical parameters affect biogas generation, and (3) an implementation phase, where a biogas system was designed and assembled in a dairy operation located in a rural region of Colombia. This system was designed using high-density polyethylene (HDPE) of 40 mil thickness, which has demonstrated a high resistance to environmental factors and physical damage (Topliff, thesis in preparation). This demonstration was conducted to identify construction needs, resistance, biogas output, as well as local acceptance and interest. The biogas system has the secondary benefit of enhancing micro and macro farming operation (dairy and crops) by substituting costly chemical fertilizers with the biogas effluent, increasing farm resilience and reducing operational costs. The research project was demonstrated at a field day to the local rural community of Victoria, Caldas, and also to several private and public institutions. The goal was to demonstrate the benefits of a biogas system and to address any misconceptions regarding the installation requirements, maintenance, and costs. Among the attendees were local political candidates, swine farmers, cattle ranchers, dairy/cheese producers, waste management companies, Servicio Nacional de Aprendizaje -- SENA (Learning National Service), the University of Caldas, and other nearby communities interested in the project. The project proved to be a successful technical and social experience and is, at present, fully operational, generating 1m3 or three hours of continuous burning gas per day. Community members continue to visit the biogas system, to learn, and integrate biogas into their own operations. One valuable lesson was the need for a comprehensive program to involve the women in the project and to inform them of the health and environmental benefits of using clean and safe biogas.


Biogas Systems in China

Biogas Systems in China

Author: Bin Chen

Publisher: Springer

Published: 2017-09-01

Total Pages: 166

ISBN-13: 3662554984

DOWNLOAD EBOOK

This book derives an explicit analytical pattern (or framework) that permits the examination and optimization of biogas production systems. It provides a concise overview of the current status of biogas and biogas coupled agricultural systems in China, and introduces evaluation methods for energy efficiency, environmental emissions, economic performance and sustainability assessment approaches. Based on empirical studies, it also explores future options for the system development by focusing on emissions mitigation, biogas energy efficiency and system sustainability. Systematic methods of life cycle assessment and thermodynamic analysis may provide new angles for biogas system evaluation. The system discussed is not only a biogas producer, but also a biogas-linked ecological agricultural system, which has the potential to broaden the applicable scopes of renewable energy and eco-agricultural management. The comprehensive, in-depth knowledge and experience presented provide new analytical approaches for researchers in relevant fields and shed light on the construction and operation of emerging anaerobic digestion and biogas industries. This book is a valuable resource for researchers focusing on biogas system modeling, project managers and policymakers.