Collating otherwise hard-to-get and recently acquired knowledge in one work, this is a comprehensive reference on the synthesis, properties, characterization, and applications of this eco-friendly class of plastics. A group of internationally renowned researchers offer their first-hand experience and knowledge, dealing exclusively with those biodegradable polyesters that have become increasingly important over the past two decades due to environmental concerns on the one hand and newly-devised applications in the biomedical field on the other. The result is an unparalleled overview for the industrial chemist and materials scientist, as well as for developers and researchers in industry and academia alike.
Few scientific developments in recent years have captured the popular imagination like the subject of'biodegradable' plastics. The reasons for this are complex and lie deep in the human subconscious. Discarded plastics are an intrusion on the sea shore and in the countryside. The fact that nature's litter abounds in the sea and on land is acceptable because it is biodegradable - even though it may take many years to be bioassimilated into the ecosystem. Plastics litter is not seen to be biodegradable and is aesthetically unacceptable because it does not blend into the natural environment. To the environmentally aware but often scientifically naive, biodegradation is seen to be the ecologically acceptable solution to the problem of plastic packaging waste and litter and some packaging manufacturers have exploited the 'green' consumer with exaggerated claims to 'environmentally friendly' biodegradable packaging materials. The principles underlying environmental degradation are not understood even by some manufacturers of 'biodegradable' materials and the claims made for them have been categorized as 'deceptive' by USA legislative authorities. This has set back the acceptance of plastics with controlled biodegradability as part of the overall waste and litter control strategy. At the opposite end of the commercial spectrum, the polymer manufactur ing industries, through their trade associations, have been at pains to discount the role of degradable materials in waste and litter management. This negative campaign has concentrated on the supposed incompatibility of degradable plastics with aspects of waste management strategy, notably materials recycling.
A renewed interest in aliphatic polyesters has resulted in developing materials important in the biomedical and ecological fields. Mainly materials such as PLA and PCL homopolymers have so far been used in most applications. There are many other monomers which can be used. Different molecular structures give a wider range of physical properties as well as the possibility of regulating the degradation rate. By using different types of initiators and catalysts, ring-opening polymerization of lactones and lactides provides macromolecules with advanced molecular architectures. In the future, new degradable polymers should be able to participate in the metabolism of nature. Some examples of novel polymers with inherent environmentally favorable properties such as renewability and degradability and a series of interesting monomers found in the metabolisms and cycles of nature are given.
This book is an excellent guide to biobased and biodegradable polymeric materials. It summarizes current knowledge on polymer degradation mechanisms and provides insight into recent, state of the art syntheses of (bio)degradable polymers. The book captures the shift that is currently observed in polymer industries, which takes the industry from a strict petroleum-based business to an industry that starts to incorporate biobased raw materials and seeks actively to manufacture materials that are environmentally benign. The book describes various aspects of current polymer research with special emphasis on natural polymers, syntheses and modifications of polyesters and characterization technologies that allow to elucidate degradation mechanisms. The understanding of polymer degradation is not limited anymore to hydrolytic processes, this book captures new approaches to the degradation of plastic materials ranging from photodegradation to the regulation of genes of polymer-degrading microorganisms. A profound part of the book is dedicated to poly(lactic acid) a polymer that is now produced in large scale from renewable resources, the modification, copolymerization, application and engineering of this material is discussed in detail and a comprehensive review is provided.
Scientists are conducting active research in different fields of engineering, science and technology by adopting the Green Chemistry Principles and methodologies to devise new processes, with a view to help protect and ultimately save the environment from further anthropogenic interruptions and damage. With this in mind, the book provides an up-to-date, coherently written and objectively presented set of chapters from eminent international researchers who are actively involved in academic and technological research in the synthesis, (bio)degradation, testing and applications of biodegradable polymers and biopolymers. This pool of the latest ideas, recent research and technological progress, together with a high level of thinking with a comprehensive perspective, makes the emerging field of biodegradable polymer science and engineering (or bio-based polymers) linked to environmental sustainability, the essence of this key publication. The handbook consists of chapters written and contributed by international experts from academia who are world leaders in research and technology in sustainability and biopolymer and biodegradable polymer synthesis, characterisation, testing and use. The book highlights the following areas: green polymers; biopolymers and bionanocomposites; biodegradable and injectable polymers; biodegradable polyesters; synthesis and physical properties; discovery and characterization of biopolymers; degradable bioelastomers, lactic acid based biodegradable polymers; enzymatic degradation of biodegradable polymers; biodegradation of polymers in the composting environment; recent development in biodegradable polymers; research and applications and biodegradable foams. The book is aimed at technical, research-orientated and marketing people in industry, universities and institutions. It will also be of value to the worldwide public interested in sustainability issues and biopolymer development as well as others interested in the practical means that are being used to reduce the environmental impacts of chemical processes and products, to further eco-efficiency, and to advance the utilization of renewable resources for a bio-based production and supplier chain. Readers will gain a comprehensive and consolidated overview of the immense potential and ongoing research in bio-based and biodegradable polymer science, engineering and technology to make the world greener.
The vast majority of plastic products are made from petroleum-based synthetic polymers that do not degrade in a landfill or in a compost-like environment. Therefore, the disposal of these products poses a serious environmental problem. An environmentally-conscious alternative is to design/synthesize polymers that are biodegradable. Biodegradable polymers for industrial applications introduces the subject in part one by outlining the classification and development of biodegradable polymers with individual chapters on polyhydroxyalkanoates, polyesteramides and thermoplastic starch biodegradable polymers and others. The second part explores the materials available for the production of biodegradable polymers. Polymers derived from sugars, natural fibres, renewable forest resources, poly(lactic acid) and protein-nanoparticle composites will be looked at in detail in this section. Part three looks at the properties and mechanisms of degradation, prefacing the subject with a chapter on current standards. The final part explores opportunities for industrial applications, with chapters on packing, agriculture and biodegradable polycaprolactone foams in supercritical carbon dioxide. Biodegradable polymers for industrial applications explores the fundamental concepts concerning the development of biodegradable polymers, degradable polymers from sustainable sources, degradation and properties and industrial applications. It is an authoritative book that will be invaluable for academics, researchers and policy makers in the industry.
In the past 25 years, plastic products have gained universal use not only in food, clothing and shelter, but also in the transportation, construction, medical and leisure industries. Whereas previously synthetic plastics were developed as durable substitute products, increasing concern for the global environment and solid waste management has resulted in an urgent demand for biodegradable plastics. The main topics of the Third International Scientific Workshop were as follows: 1. Biodegradation of polymers and plastics 2. Environmental degradation of plastics 3. Synthesis and properties of new biodegradable plastic materials 4. Biodegradation and morphologies of polymer blends 5. Development of biodegradation test methods 6. Governmental policy, regulation and standards.
Covers the entire evolutionary spectrum of biomass, from its genetic modification and harvesting, to conversion technologies, life cycle analysis, and its value to the current global economy This original textbook introduces readers to biomass—a renewable resource derived from forest, agriculture, and organic-based materials—which has attracted significant attention as a sustainable alternative to petrochemicals for large-scale production of fuels, materials, and chemicals. The current renaissance in the manipulation and uses of biomass has been so abrupt and focused, that very few educational textbooks actually cover these topics to any great extent. That’s why this interdisciplinary text is a welcome resource for those seeking a better understanding of this new discipline. It combines the underpinning science of biomass with technology applications and sustainability considerations to provide a broad focus to its readers. Introduction to Renewable Biomaterials: First Principles and Concepts consists of eight chapters on the following topics: fundamental biochemical & biotechnological principles; principles and methodologies controlling plant growth and silviculture; fundamental science and engineering considerations; critical considerations and strategies for harvesting; first principles of pretreatment; conversion technologies; characterization methods and techniques; and life cycle analysis. Each chapter includes a glossary of terms, two to three problem sets, and boxes to highlight novel discoveries and instruments. Chapters also offer questions for further consideration and suggestions for further reading. Developed from a successful USDA funded course, run by a partnership of three US universities: BioSUCEED - BioProducts Sustainability, a University Cooperative Center for Excellence in Education Covers the entire evolutionary spectrum of biomass, from genetic modification to life cycle analysis Presents the key chemistry, biology, technology, and sustainability aspects of biomaterials Edited by a highly regarded academic team, with extensive research and teaching experience in the field Introduction to Renewable Biomaterials: First Principles and Concepts is an ideal text for advanced academics and industry professionals involved with biomass and renewable resources, bioenergy, biorefining, biotechnology, materials science, sustainable chemistry, chemical engineering, crop science and technology, agriculture.
This book contains a collection of different biodegradation research activities where biological processes take place. The book has two main sections: A) Polymers and Surfactants Biodegradation and B) Biodegradation: Microbial Behaviour.