Deep Learning-Based Face Analytics

Deep Learning-Based Face Analytics

Author: Nalini K Ratha

Publisher: Springer Nature

Published: 2021-08-16

Total Pages: 405

ISBN-13: 3030746976

DOWNLOAD EBOOK

This book provides an overview of different deep learning-based methods for face recognition and related problems. Specifically, the authors present methods based on autoencoders, restricted Boltzmann machines, and deep convolutional neural networks for face detection, localization, tracking, recognition, etc. The authors also discuss merits and drawbacks of available approaches and identifies promising avenues of research in this rapidly evolving field. Even though there have been a number of different approaches proposed in the literature for face recognition based on deep learning methods, there is not a single book available in the literature that gives a complete overview of these methods. The proposed book captures the state of the art in face recognition using various deep learning methods, and it covers a variety of different topics related to face recognition. This book is aimed at graduate students studying electrical engineering and/or computer science. Biometrics is a course that is widely offered at both undergraduate and graduate levels at many institutions around the world: This book can be used as a textbook for teaching topics related to face recognition. In addition, the work is beneficial to practitioners in industry who are working on biometrics-related problems. The prerequisites for optimal use are the basic knowledge of pattern recognition, machine learning, probability theory, and linear algebra.


Machine Learning Techniques for Multimedia

Machine Learning Techniques for Multimedia

Author: Matthieu Cord

Publisher: Springer Science & Business Media

Published: 2008-02-07

Total Pages: 297

ISBN-13: 3540751718

DOWNLOAD EBOOK

Processing multimedia content has emerged as a key area for the application of machine learning techniques, where the objectives are to provide insight into the domain from which the data is drawn, and to organize that data and improve the performance of the processes manipulating it. Arising from the EU MUSCLE network, this multidisciplinary book provides a comprehensive coverage of the most important machine learning techniques used and their application in this domain.


Handbook of Biometric Anti-Spoofing

Handbook of Biometric Anti-Spoofing

Author: Sébastien Marcel

Publisher: Springer

Published: 2019-01-01

Total Pages: 522

ISBN-13: 3319926276

DOWNLOAD EBOOK

This authoritative and comprehensive handbook is the definitive work on the current state of the art of Biometric Presentation Attack Detection (PAD) – also known as Biometric Anti-Spoofing. Building on the success of the previous, pioneering edition, this thoroughly updated second edition has been considerably expanded to provide even greater coverage of PAD methods, spanning biometrics systems based on face, fingerprint, iris, voice, vein, and signature recognition. New material is also included on major PAD competitions, important databases for research, and on the impact of recent international legislation. Valuable insights are supplied by a selection of leading experts in the field, complete with results from reproducible research, supported by source code and further information available at an associated website. Topics and features: reviews the latest developments in PAD for fingerprint biometrics, covering optical coherence tomography (OCT) technology, and issues of interoperability; examines methods for PAD in iris recognition systems, and the application of stimulated pupillary light reflex for this purpose; discusses advancements in PAD methods for face recognition-based biometrics, such as research on 3D facial masks and remote photoplethysmography (rPPG); presents a survey of PAD for automatic speaker recognition (ASV), including the use of convolutional neural networks (CNNs), and an overview of relevant databases; describes the results yielded by key competitions on fingerprint liveness detection, iris liveness detection, and software-based face anti-spoofing; provides analyses of PAD in fingervein recognition, online handwritten signature verification, and in biometric technologies on mobile devicesincludes coverage of international standards, the E.U. PSDII and GDPR directives, and on different perspectives on presentation attack evaluation. This text/reference is essential reading for anyone involved in biometric identity verification, be they students, researchers, practitioners, engineers, or technology consultants. Those new to the field will also benefit from a number of introductory chapters, outlining the basics for the most important biometrics.


ICCCE 2019

ICCCE 2019

Author: Amit Kumar

Publisher: Springer

Published: 2019-08-02

Total Pages: 436

ISBN-13: 981138715X

DOWNLOAD EBOOK

This book is a collection research papers and articles from the 2nd International Conference on Communications and Cyber-Physical Engineering (ICCCE – 2019), held in Pune, India in Feb 2019. Discussing the latest developments in voice and data communication engineering, cyber-physical systems, network science, communication software, image- and multimedia processing research and applications, as well as communication technologies and other related technologies, it includes contributions from both academia and industry.


Deep Learning for Computer Vision

Deep Learning for Computer Vision

Author: Jason Brownlee

Publisher: Machine Learning Mastery

Published: 2019-04-04

Total Pages: 564

ISBN-13:

DOWNLOAD EBOOK

Step-by-step tutorials on deep learning neural networks for computer vision in python with Keras.


Handbook of Face Recognition

Handbook of Face Recognition

Author: Stan Z. Li

Publisher: Springer Science & Business Media

Published: 2011-08-22

Total Pages: 694

ISBN-13: 0857299328

DOWNLOAD EBOOK

This highly anticipated new edition provides a comprehensive account of face recognition research and technology, spanning the full range of topics needed for designing operational face recognition systems. After a thorough introductory chapter, each of the following chapters focus on a specific topic, reviewing background information, up-to-date techniques, and recent results, as well as offering challenges and future directions. Features: fully updated, revised and expanded, covering the entire spectrum of concepts, methods, and algorithms for automated face detection and recognition systems; provides comprehensive coverage of face detection, tracking, alignment, feature extraction, and recognition technologies, and issues in evaluation, systems, security, and applications; contains numerous step-by-step algorithms; describes a broad range of applications; presents contributions from an international selection of experts; integrates numerous supporting graphs, tables, charts, and performance data.


Unconstrained Face Recognition

Unconstrained Face Recognition

Author: Shaohua Kevin Zhou

Publisher: Springer Science & Business Media

Published: 2006-10-11

Total Pages: 244

ISBN-13: 0387294864

DOWNLOAD EBOOK

Face recognition has been actively studied over the past decade and continues to be a big research challenge. Just recently, researchers have begun to investigate face recognition under unconstrained conditions. Unconstrained Face Recognition provides a comprehensive review of this biometric, especially face recognition from video, assembling a collection of novel approaches that are able to recognize human faces under various unconstrained situations. The underlying basis of these approaches is that, unlike conventional face recognition algorithms, they exploit the inherent characteristics of the unconstrained situation and thus improve the recognition performance when compared with conventional algorithms. Unconstrained Face Recognition is structured to meet the needs of a professional audience of researchers and practitioners in industry. This volume is also suitable for advanced-level students in computer science.


Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments

Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments

Author: Raj, Alex Noel Joseph

Publisher: IGI Global

Published: 2020-12-25

Total Pages: 381

ISBN-13: 1799866920

DOWNLOAD EBOOK

Recent advancements in imaging techniques and image analysis has broadened the horizons for their applications in various domains. Image analysis has become an influential technique in medical image analysis, optical character recognition, geology, remote sensing, and more. However, analysis of images under constrained and unconstrained environments require efficient representation of the data and complex models for accurate interpretation and classification of data. Deep learning methods, with their hierarchical/multilayered architecture, allow the systems to learn complex mathematical models to provide improved performance in the required task. The Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments provides a critical examination of the latest advancements, developments, methods, systems, futuristic approaches, and algorithms for image analysis and addresses its challenges. Highlighting concepts, methods, and tools including convolutional neural networks, edge enhancement, image segmentation, machine learning, and image processing, the book is an essential and comprehensive reference work for engineers, academicians, researchers, and students.


Deep Learning for Coders with fastai and PyTorch

Deep Learning for Coders with fastai and PyTorch

Author: Jeremy Howard

Publisher: O'Reilly Media

Published: 2020-06-29

Total Pages: 624

ISBN-13: 1492045497

DOWNLOAD EBOOK

Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala


Handbook of Digital Face Manipulation and Detection

Handbook of Digital Face Manipulation and Detection

Author: Christian Rathgeb

Publisher: Springer Nature

Published: 2022-01-31

Total Pages: 487

ISBN-13: 3030876640

DOWNLOAD EBOOK

This open access book provides the first comprehensive collection of studies dealing with the hot topic of digital face manipulation such as DeepFakes, Face Morphing, or Reenactment. It combines the research fields of biometrics and media forensics including contributions from academia and industry. Appealing to a broad readership, introductory chapters provide a comprehensive overview of the topic, which address readers wishing to gain a brief overview of the state-of-the-art. Subsequent chapters, which delve deeper into various research challenges, are oriented towards advanced readers. Moreover, the book provides a good starting point for young researchers as well as a reference guide pointing at further literature. Hence, the primary readership is academic institutions and industry currently involved in digital face manipulation and detection. The book could easily be used as a recommended text for courses in image processing, machine learning, media forensics, biometrics, and the general security area.