Based on dynamic information collected from different time intervals in some real situations, this paper firstly proposes a dynamic single valued neutrosophic multiset (DSVNM) to express dynamic information and operational relations of DSVNMs.
Based on dynamic information collected from different time intervals in some real situations, this paper firstly proposes a dynamic single valued neutrosophic multiset (DSVNM) to express dynamic information and operational relations of DSVNMs
Based on the multiplicity evaluation in some real situations, this paper firstly introduces a single-valued neutrosophic multiset (SVNM) as a subclass of neutrosophic multiset (NM) to express the multiplicity information and the operational relations of SVNMs.
This book offers a comprehensive guide to the use of neutrosophic sets in multiple criteria decision making problems. It shows how neutrosophic sets, which have been developed as an extension of fuzzy and paraconsistent logic, can help in dealing with certain types of uncertainty that classical methods could not cope with. The chapters, written by well-known researchers, report on cutting-edge methodologies they have been developing and testing on a variety of engineering problems. The book is unique in its kind as it reports for the first time and in a comprehensive manner on the joint use of neutrosophic sets together with existing decision making methods to solve multi-criteria decision-making problems, as well as other engineering problems that are complex, hard to model and/or include incomplete and vague data. By providing new ideas, suggestions and directions for the solution of complex problems in engineering and decision making, it represents an excellent guide for researchers, lecturers and postgraduate students pursuing research on neutrosophic decision making, and more in general in the area of industrial and management engineering.
In information technology, the concepts of cost, time, delivery, space, quality, durability, and price have gained greater importance in solving managerial decision-making problems in supply chain models, transportation problems, and inventory control problems. Moreover, competition is becoming tougher in imprecise environments. Neutrosophic sets and logic are gaining significant attention in solving real-life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistency, and indeterminacy. Neutrosophic Sets in Decision Analysis and Operations Research is a critical, scholarly publication that examines various aspects of organizational research through mathematical equations and algorithms and presents neutrosophic theories and their applications in various optimization fields. Featuring a wide range of topics such as information retrieval, decision making, and matrices, this book is ideal for engineers, technicians, designers, mathematicians, practitioners of mathematics in economy and technology, scientists, academicians, professionals, managers, researchers, and students.
Neutrosophic set, initiated by Smarandache, is a novel tool to deal with vagueness considering the truth-membership T, indeterminacy-membership I and falsity-membership F satisfying the condition 0 ≤ T + I + F ≤ 3. It can be used to characterize the uncertain information more sufficiently and accurately than intuitionistic fuzzy set. Neutrosophic set has attracted great attention of many scholars that have been extended to new types and these extensions have been used in many areas such as aggregation operators, decision making, image processing, information measures, graph and algebraic structures.
Interval bipolar neutrosophic set is a significant extension of interval neutrosophic set where every element of the set comprises of three independent positive membership functions and three independent negative membership functions
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. In this issue: On Neutrosophic Crisp Sets and Neutrosophic Crisp Mathematical Morphology, New Results on Pythagorean Neutrosophic Open Sets in Pythagorean Neutrosophic Topological Spaces, Comparative Mathematical Model for Predicting of Financial Loans Default using Altman Z-Score and Neutrosophic AHP Methods.