This classic geometry text explores the theory of 3-dimensional convex polyhedra in a unique fashion, with exceptional detail. Vital and clearly written, the book includes the basics of convex polyhedra and collects the most general existence theorems for convex polyhedra that are proved by a new and unified method. This edition includes a comprehensive bibliography by V.A. Zalgaller, and related papers as supplements to the original text.
This classic geometry text explores the theory of 3-dimensional convex polyhedra in a unique fashion, with exceptional detail. Vital and clearly written, the book includes the basics of convex polyhedra and collects the most general existence theorems for convex polyhedra that are proved by a new and unified method. This edition includes a comprehensive bibliography by V.A. Zalgaller, and related papers as supplements to the original text.
Polyhedra have cropped up in many different guises throughout recorded history. In modern times, polyhedra and their symmetries have been cast in a new light by combinatorics an d group theory. This book comprehensively documents the many and varied ways that polyhedra have come to the fore throughout the development of mathematics. The author strikes a balance between covering the historical development of the theory surrounding polyhedra, and presenting a rigorous treatment of the mathematics involved. It is attractively illustrated with dozens of diagrams to illustrate ideas that might otherwise prove difficult to grasp. Historians of mathematics, as well as those more interested in the mathematics itself, will find this unique book fascinating.
Discrete Convex Analysis is a novel paradigm for discrete optimization that combines the ideas in continuous optimization (convex analysis) and combinatorial optimization (matroid/submodular function theory) to establish a unified theoretical framework for nonlinear discrete optimization. The study of this theory is expanding with the development of efficient algorithms and applications to a number of diverse disciplines like matrix theory, operations research, and economics. This self-contained book is designed to provide a novel insight into optimization on discrete structures and should reveal unexpected links among different disciplines. It is the first and only English-language monograph on the theory and applications of discrete convex analysis. Discrete Convex Analysis provides the information that professionals in optimization will need to "catch up" with this new theoretical development. It also presents an unexpected connection between matroid theory and mathematical economics and expounds a deeper connection between matrices and matroids than most standard textbooks.
In 1958, Ralph E. Gomory transformed the field of integer programming when he published a paper that described a cutting-plane algorithm for pure integer programs and announced that the method could be refined to give a finite algorithm for integer programming. In 2008, to commemorate the anniversary of this seminal paper, a special workshop celebrating fifty years of integer programming was held in Aussois, France, as part of the 12th Combinatorial Optimization Workshop. It contains reprints of key historical articles and written versions of survey lectures on six of the hottest topics in the field by distinguished members of the integer programming community. Useful for anyone in mathematics, computer science and operations research, this book exposes mathematical optimization, specifically integer programming and combinatorial optimization, to a broad audience.
This volume constitutes the proceedings of the Fourth International Workshop on Algorithms and Data Structures, WADS '95, held in Kingston, Canada in August 1995. The book presents 40 full refereed papers selected from a total of 121 submissions together with invited papers by Preparata and Bilardi, Sharir, Toussaint, and Vitanyi and Li. The book addresses various aspects of algorithms, data structures, computational geometry, scheduling, computational graph theory, and searching.
The Encyclopaedia of Mathematics is the most up-to-date, authoritative and comprehensive English-language work of reference in mathematics which exists today. With over 7,000 articles from `A-integral' to `Zygmund Class of Functions', supplemented with a wealth of complementary information, and an index volume providing thorough cross-referencing of entries of related interest, the Encyclopaedia of Mathematics offers an immediate source of reference to mathematical definitions, concepts, explanations, surveys, examples, terminology and methods. The depth and breadth of content and the straightforward, careful presentation of the information, with the emphasis on accessibility, makes the Encyclopaedia of Mathematics an immensely useful tool for all mathematicians and other scientists who use, or are confronted by, mathematics in their work. The Enclyclopaedia of Mathematics provides, without doubt, a reference source of mathematical knowledge which is unsurpassed in value and usefulness. It can be highly recommended for use in libraries of universities, research institutes, colleges and even schools.
This book constitutes the refereed proceedings of the 16th International Symposium on Static Analysis, SAS 2009, held in Los Angeles, CA, USA in August 2009 - co-located with LICS 2009, the 24th IEEE Symposium on Logic in Computer Science. The 21 revised full papers presented together with two invited lectures were carefully reviewed and selected from 52 submissions. The papers address all aspects of static analysis including abstract domains, abstract interpretation, abstract testing, compiler optimizations, control flow analysis, data flow analysis, model checking, program specialization, security analysis, theoretical analysis frameworks, type based analysis, and verification systems.