PID Control for Industrial Processes

PID Control for Industrial Processes

Author: Mohammad Shamsuzzoha

Publisher: BoD – Books on Demand

Published: 2018-09-12

Total Pages: 220

ISBN-13: 1789237009

DOWNLOAD EBOOK

PID Control for Industrial Processes presents a clear, multidimensional representation of proportional - integral - derivative (PID) control for both students and specialists working in the area of PID control. It mainly focuses on the theory and application of PID control in industrial processes. It incorporates recent developments in PID control technology in industrial practice. Emphasis has been given to finding the best possible approach to develop a simple and optimal solution for industrial users. This book includes several chapters that cover a broad range of topics and priority has been given to subjects that cover real-world examples and case studies. The book is focused on approaches for controller tuning, i.e., method bases on open-loop plant tests and closed-loop experiments.


PID Controller Tuning Using the Magnitude Optimum Criterion

PID Controller Tuning Using the Magnitude Optimum Criterion

Author: Konstantinos G. Papadopoulos

Publisher: Springer

Published: 2014-11-01

Total Pages: 303

ISBN-13: 3319072633

DOWNLOAD EBOOK

An instructive reference that will help control researchers and engineers, interested in a variety of industrial processes, to take advantage of a powerful tuning method for the ever-popular PID control paradigm. This monograph presents explicit PID tuning rules for linear control loops regardless of process complexity. It shows the reader how such loops achieve zero steady-position, velocity, and acceleration errors and are thus able to track fast reference signals. The theoretical development takes place in the frequency domain by introducing a general-transfer-function-known process model and by exploiting the principle of the magnitude optimum criterion. It is paralleled by the presentation of real industrial control loops used in electric motor drives. The application of the proposed tuning rules to a large class of processes shows that irrespective of the complexity of the controlled process the shape of the step and frequency response of the control loop exhibits a specific performance. This specific performance, along with the PID explicit solution, formulates the basis for developing an automatic tuning method for the PID controller parameters which is a problem often met in many industry applications—temperature, pH, and humidity control, ratio control in product blending, and boiler-drum level control, for example. The process of the model is considered unknown and controller parameters are tuned automatically such that the aforementioned performance is achieved. The potential both for the explicit tuning rules and the automatic tuning method is demonstrated using several examples for benchmark process models recurring frequently in many industry applications.


Handbook of PI and PID Controller Tuning Rules

Handbook of PI and PID Controller Tuning Rules

Author: Aidan O'Dwyer

Publisher: Imperial College Press

Published: 2006

Total Pages: 564

ISBN-13: 186094910X

DOWNLOAD EBOOK

The vast majority of automatic controllers used to compensate industrial processes are of PI or PID type. This book comprehensively compiles, using a unified notation, tuning rules for these controllers proposed over the last seven decades (1935OCo2005). The tuning rules are carefully categorized and application information about each rule is given. The book discusses controller architecture and process modeling issues, as well as the performance and robustness of loops compensated with PI or PID controllers. This unique publication brings together in an easy-to-use format material previously published in a large number of papers and books. This wholly revised second edition extends the presentation of PI and PID controller tuning rules, for single variable processes with time delays, to include additional rules compiled since the first edition was published in 2003. Sample Chapter(s). Chapter 1: Introduction (17 KB). Contents: Controller Architecture; Tuning Rules for PI Controllers; Tuning Rules for PID Controllers; Performance and Robustness Issues in the Compensation of FOLPD Processes with PI and PID Controllers. Readership: Control engineering researchers in academia and industry with an interest in PID control and control engineering practitioners using PID controllers. The book also serves as a reference for postgraduate and undergraduate students."


Autotuning of PID Controllers

Autotuning of PID Controllers

Author: Cheng-Ching Yu

Publisher: Springer Science & Business Media

Published: 2006-05-11

Total Pages: 268

ISBN-13: 1846280370

DOWNLOAD EBOOK

Recognising the benefits of improved control, the second edition of Autotuning of PID Controllers provides simple yet effective methods for improving PID controller performance. The practical issues of controller tuning are examined using numerous worked examples and case studies in association with specially written autotuning MATLAB® programs to bridge the gap between conventional tuning practice and novel autotuning methods. The extensively revised second edition covers: • Derivation of analytical expressions for relay feedback responses. • Shapes of relay responses and improved closed-loop control and performance assessment. • Autotuning for handling process nonlinearity in multiple-model-based cases. • The impact of imperfect actuators on controller performance. This book is more than just a monograph, it is an independent learning tool applicable to the work of academic control engineers and of their counterparts in industry looking for more effective process control and automation.


Control Performance Management in Industrial Automation

Control Performance Management in Industrial Automation

Author: Mohieddine Jelali

Publisher: Springer Science & Business Media

Published: 2012-10-31

Total Pages: 489

ISBN-13: 1447145461

DOWNLOAD EBOOK

Control Performance Management in Industrial Automation provides a coherent and self-contained treatment of a group of methods and applications of burgeoning importance to the detection and solution of problems with control loops that are vital in maintaining product quality, operational safety, and efficiency of material and energy consumption in the process industries. The monograph deals with all aspects of control performance management (CPM), from controller assessment (minimum-variance-control-based and advanced methods), to detection and diagnosis of control loop problems (process non-linearities, oscillations, actuator faults), to the improvement of control performance (maintenance, re-design of loop components, automatic controller re-tuning). It provides a contribution towards the development and application of completely self-contained and automatic methodologies in the field. Moreover, within this work, many CPM tools have been developed that goes far beyond available CPM packages. Control Performance Management in Industrial Automation: · presents a comprehensive review of control performance assessment methods; · develops methods and procedures for the detection and diagnosis of the root-causes of poor performance in complex control loops; · covers important issues that arise when applying these assessment and diagnosis methods; · recommends new approaches and techniques for the optimization of control loop performance based on the results of the control performance stage; and · offers illustrative examples and industrial case studies drawn from – chemicals, building, mining, pulp and paper, mineral and metal processing industries. This book will be of interest to academic and industrial staff working on control systems design, maintenance or optimisation in all process industries.


Tuning and Control Loop Performance, Fourth Edition

Tuning and Control Loop Performance, Fourth Edition

Author: Gregory K. McMillan

Publisher: Momentum Press

Published: 2014-12-18

Total Pages: 754

ISBN-13: 1606501712

DOWNLOAD EBOOK

Tuning and Control Loop Performance, Fourth Edition provides the knowledge to eliminate the misunderstandings, realize the difference between theoretical and industrial application of PID control, address practical difficulties, improve field automation system design, use the latest PID features, and ultimately get the best tuning settings that enables the PID to achieve its full potential. The proportional-integral-derivative (PID) controller is the heart of every control system in the process industry. Given the proper setup and tuning, the PID has proven to have the capability and flexibility needed to meet nearly all of industry’s basic control requirements. However, the information to support the best use of these features has fallen behind the progress of improved functionality. Additionally, there is considerable disagreement on the tuning rules that largely stems from a misunderstanding of how tuning rules have evolved and the lack of recognition of the effect of automation system dynamics and the incredible spectrum of process responses, disturbances, and performance objectives.


PID Control System Design and Automatic Tuning using MATLAB/Simulink

PID Control System Design and Automatic Tuning using MATLAB/Simulink

Author: Liuping Wang

Publisher: John Wiley & Sons

Published: 2020-04-20

Total Pages: 366

ISBN-13: 1119469341

DOWNLOAD EBOOK

Covers PID control systems from the very basics to the advanced topics This book covers the design, implementation and automatic tuning of PID control systems with operational constraints. It provides students, researchers, and industrial practitioners with everything they need to know about PID control systems—from classical tuning rules and model-based design to constraints, automatic tuning, cascade control, and gain scheduled control. PID Control System Design and Automatic Tuning using MATLAB/Simulink introduces PID control system structures, sensitivity analysis, PID control design, implementation with constraints, disturbance observer-based PID control, gain scheduled PID control systems, cascade PID control systems, PID control design for complex systems, automatic tuning and applications of PID control to unmanned aerial vehicles. It also presents resonant control systems relevant to many engineering applications. The implementation of PID control and resonant control highlights how to deal with operational constraints. Provides unique coverage of PID Control of unmanned aerial vehicles (UAVs), including mathematical models of multi-rotor UAVs, control strategies of UAVs, and automatic tuning of PID controllers for UAVs Provides detailed descriptions of automatic tuning of PID control systems, including relay feedback control systems, frequency response estimation, Monte-Carlo simulation studies, PID controller design using frequency domain information, and MATLAB/Simulink simulation and implementation programs for automatic tuning Includes 15 MATLAB/Simulink tutorials, in a step-by-step manner, to illustrate the design, simulation, implementation and automatic tuning of PID control systems Assists lecturers, teaching assistants, students, and other readers to learn PID control with constraints and apply the control theory to various areas. Accompanying website includes lecture slides and MATLAB/ Simulink programs PID Control System Design and Automatic Tuning using MATLAB/Simulink is intended for undergraduate electrical, chemical, mechanical, and aerospace engineering students, and will greatly benefit postgraduate students, researchers, and industrial personnel who work with control systems and their applications.