Contributions to Operator Theory and its Applications

Contributions to Operator Theory and its Applications

Author: Takayuki Furuta

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 229

ISBN-13: 3034885814

DOWNLOAD EBOOK

This volume is dedicated to Tsuyoshi Ando, a foremost expert in operator theory, matrix theory, complex analysis, and their applications, on the occasion of his 60th birthday. The book opens with his biography and list of publications. It contains a selection of papers covering a broad spectrum of topics ranging from abstract operator theory to various concrete problems and applications. The majority of the papers deal with topics in modern operator theory and its applications. This volume also contains papers on interpolation and completion problems, factorization problems and problems connected with complex analysis. The book will appeal to a wide audience of pure and applied mathematicians.


Operator Theory, Functional Analysis and Applications

Operator Theory, Functional Analysis and Applications

Author: M. Amélia Bastos

Publisher: Birkhäuser

Published: 2021-04-01

Total Pages: 657

ISBN-13: 9783030519445

DOWNLOAD EBOOK

This book presents 30 articles on the topic areas discussed at the 30th “International Workshop on Operator Theory and its Applications”, held in Lisbon in July 2019. The contributions include both expository essays and original research papers reflecting recent advances in the traditional IWOTA areas and emerging adjacent fields, as well as the applications of Operator Theory and Functional Analysis. The topics range from C*–algebras and Banach *–algebras, Sturm-Liouville theory, integrable systems, dilation theory, frame theory, Toeplitz, Hankel, and singular integral operators, to questions from lattice, group and matrix theories, complex analysis, harmonic analysis, and function spaces. Given its scope, the book is chiefly intended for researchers and graduate students in the areas of Operator Theory, Functional Analysis, their applications and adjacent fields.


Modern Methods in Operator Theory and Harmonic Analysis

Modern Methods in Operator Theory and Harmonic Analysis

Author: Alexey Karapetyants

Publisher: Springer Nature

Published: 2019-08-28

Total Pages: 474

ISBN-13: 3030267482

DOWNLOAD EBOOK

This proceedings volume gathers selected, peer-reviewed papers from the "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis VIII" (OTHA 2018) conference, which was held in Rostov-on-Don, Russia, in April 2018. The book covers a diverse range of topics in advanced mathematics, including harmonic analysis, functional analysis, operator theory, function theory, differential equations and fractional analysis – all fields that have been intensively developed in recent decades. Direct and inverse problems arising in mathematical physics are studied and new methods for solving them are presented. Complex multiparameter objects that require the involvement of operators with variable parameters and functional spaces, with fractional and even variable exponents, make these approaches all the more relevant. Given its scope, the book will especially benefit researchers with an interest in new trends in harmonic analysis and operator theory, though it will also appeal to graduate students seeking new and intriguing topics for further investigation.


Operator Algebras and Mathematical Physics

Operator Algebras and Mathematical Physics

Author: Tirthankar Bhattacharyya

Publisher: Birkhäuser

Published: 2015-09-29

Total Pages: 207

ISBN-13: 3319181823

DOWNLOAD EBOOK

This volume gathers contributions from the International Workshop on Operator Theory and Its Applications (IWOTA) held in Bangalore, India, in December 2013. All articles were written by experts and cover a broad range of original material at the cutting edge of operator theory and its applications. Topics include multivariable operator theory, operator theory on indefinite metric spaces (Krein and Pontryagin spaces) and its applications, spectral theory with applications to differential operators, the geometry of Banach spaces, scattering and time varying linear systems, and wavelets and coherent states.


Operator Theory and Harmonic Analysis

Operator Theory and Harmonic Analysis

Author: Alexey N. Karapetyants

Publisher: Springer Nature

Published: 2021-09-27

Total Pages: 585

ISBN-13: 3030774937

DOWNLOAD EBOOK

This volume is part of the collaboration agreement between Springer and the ISAAC society. This is the first in the two-volume series originating from the 2020 activities within the international scientific conference "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis" (OTHA), Southern Federal University in Rostov-on-Don, Russia. This volume is focused on general harmonic analysis and its numerous applications. The two volumes cover new trends and advances in several very important fields of mathematics, developed intensively over the last decade. The relevance of this topic is related to the study of complex multiparameter objects required when considering operators and objects with variable parameters.


Lectures on Operator Theory and Its Applications

Lectures on Operator Theory and Its Applications

Author: Albrecht Böttcher

Publisher: American Mathematical Soc.

Published: 1996

Total Pages: 354

ISBN-13: 082180457X

DOWNLOAD EBOOK

Much of the importance of mathematics lies in its ability to provide theories which are useful in widely different fields of endeavour. A good example is the large and amorphous body of knowledge known as the theory of linear operators or operator theory, which came to life about a century ago as a theory to encompass properties common to matrix, differential, and integral operators. Thus, it is a primary purpose of operator theory to provide a coherent body of knowledge which can explain phenomena common to the enormous variety of problems in which such linear operators play a part. The theory is a vital part of functional analysis, whose methods and techniques are one of the major advances of twentieth century mathematics and now play a pervasive role in the modeling of phenomena in probability, imaging, signal processing, systems theory, etc, as well as in the more traditional areas of theoretical physics and mechanics. This book is based on lectures presented at a meeting on operator theory and its applications held at the Fields Institute in 1994.


Operator Theory, Operator Algebras, and Matrix Theory

Operator Theory, Operator Algebras, and Matrix Theory

Author: Carlos André

Publisher: Birkhäuser

Published: 2018-08-22

Total Pages: 381

ISBN-13: 3319724495

DOWNLOAD EBOOK

This book consists of invited survey articles and research papers in the scientific areas of the “International Workshop on Operator Algebras, Operator Theory and Applications,” which was held in Lisbon in July 2016. Reflecting recent developments in the field of algebras of operators, operator theory and matrix theory, it particularly focuses on groupoid algebras and Fredholm conditions, algebras of approximation sequences, C* algebras of convolution type operators, index theorems, spectrum and numerical range of operators, extreme supercharacters of infinite groups, quantum dynamics and operator algebras, and inverse eigenvalue problems. Establishing bridges between the three related areas of operator algebras, operator theory, and matrix theory, the book is aimed at researchers and graduate students who use results from these areas.


The Koopman Operator in Systems and Control

The Koopman Operator in Systems and Control

Author: Alexandre Mauroy

Publisher: Springer Nature

Published: 2020-02-22

Total Pages: 568

ISBN-13: 3030357139

DOWNLOAD EBOOK

This book provides a broad overview of state-of-the-art research at the intersection of the Koopman operator theory and control theory. It also reviews novel theoretical results obtained and efficient numerical methods developed within the framework of Koopman operator theory. The contributions discuss the latest findings and techniques in several areas of control theory, including model predictive control, optimal control, observer design, systems identification and structural analysis of controlled systems, addressing both theoretical and numerical aspects and presenting open research directions, as well as detailed numerical schemes and data-driven methods. Each contribution addresses a specific problem. After a brief introduction of the Koopman operator framework, including basic notions and definitions, the book explores numerical methods, such as the dynamic mode decomposition (DMD) algorithm and Arnoldi-based methods, which are used to represent the operator in a finite-dimensional basis and to compute its spectral properties from data. The main body of the book is divided into three parts: theoretical results and numerical techniques for observer design, synthesis analysis, stability analysis, parameter estimation, and identification; data-driven techniques based on DMD, which extract the spectral properties of the Koopman operator from data for the structural analysis of controlled systems; and Koopman operator techniques with specific applications in systems and control, which range from heat transfer analysis to robot control. A useful reference resource on the Koopman operator theory for control theorists and practitioners, the book is also of interest to graduate students, researchers, and engineers looking for an introduction to a novel and comprehensive approach to systems and control, from pure theory to data-driven methods.


Contributions to Operator Theory in Spaces with an Indefinite Metric

Contributions to Operator Theory in Spaces with an Indefinite Metric

Author: Aad Dijksma

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 419

ISBN-13: 3034888120

DOWNLOAD EBOOK

This volume is dedicated to Heinz Langer, a leading expert in spectral analysis and its applications, in particular to operators in spaces with an indefinite metric, on the occasion of his 60th birthday. The book begins with his biography and list of publications. It contains a selection of research papers, most of which are devoted to spectral analysis of operators or operator pencils with applications to ordinary and partial differential equations. Other papers deal with time-varying systems, interpolation and factorization problems, and topics from mathematical physics. About half of the papers contain further developments in the theory of operators in spaces with an indefinite metric and treat new applications. The book is of interest to a wide audience of pure and applied mathematicians.