Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology

Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology

Author: Neculai Andrei

Publisher: Springer

Published: 2017-12-04

Total Pages: 514

ISBN-13: 3319583565

DOWNLOAD EBOOK

This book presents the theoretical details and computational performances of algorithms used for solving continuous nonlinear optimization applications imbedded in GAMS. Aimed toward scientists and graduate students who utilize optimization methods to model and solve problems in mathematical programming, operations research, business, engineering, and industry, this book enables readers with a background in nonlinear optimization and linear algebra to use GAMS technology to understand and utilize its important capabilities to optimize algorithms for modeling and solving complex, large-scale, continuous nonlinear optimization problems or applications. Beginning with an overview of constrained nonlinear optimization methods, this book moves on to illustrate key aspects of mathematical modeling through modeling technologies based on algebraically oriented modeling languages. Next, the main feature of GAMS, an algebraically oriented language that allows for high-level algebraic representation of mathematical optimization models, is introduced to model and solve continuous nonlinear optimization applications. More than 15 real nonlinear optimization applications in algebraic and GAMS representation are presented which are used to illustrate the performances of the algorithms described in this book. Theoretical and computational results, methods, and techniques effective for solving nonlinear optimization problems, are detailed through the algorithms MINOS, KNITRO, CONOPT, SNOPT and IPOPT which work in GAMS technology.


Nonlinear Optimization Applications Using the GAMS Technology

Nonlinear Optimization Applications Using the GAMS Technology

Author: Neculai Andrei

Publisher: Springer Science & Business Media

Published: 2013-06-22

Total Pages: 356

ISBN-13: 1461467977

DOWNLOAD EBOOK

Here is a collection of nonlinear optimization applications from the real world, expressed in the General Algebraic Modeling System (GAMS). The concepts are presented so that the reader can quickly modify and update them to represent real-world situations.


Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming

Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming

Author: Mohit Tawarmalani

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 492

ISBN-13: 1475735324

DOWNLOAD EBOOK

Interest in constrained optimization originated with the simple linear pro gramming model since it was practical and perhaps the only computationally tractable model at the time. Constrained linear optimization models were soon adopted in numerous application areas and are perhaps the most widely used mathematical models in operations research and management science at the time of this writing. Modelers have, however, found the assumption of linearity to be overly restrictive in expressing the real-world phenomena and problems in economics, finance, business, communication, engineering design, computational biology, and other areas that frequently demand the use of nonlinear expressions and discrete variables in optimization models. Both of these extensions of the linear programming model are NP-hard, thus representing very challenging problems. On the brighter side, recent advances in algorithmic and computing technology make it possible to re visit these problems with the hope of solving practically relevant problems in reasonable amounts of computational time. Initial attempts at solving nonlinear programs concentrated on the de velopment of local optimization methods guaranteeing globality under the assumption of convexity. On the other hand, the integer programming liter ature has concentrated on the development of methods that ensure global optima. The aim of this book is to marry the advancements in solving nonlinear and integer programming models and to develop new results in the more general framework of mixed-integer nonlinear programs (MINLPs) with the goal of devising practically efficient global optimization algorithms for MINLPs.


Mixed Integer Nonlinear Programming

Mixed Integer Nonlinear Programming

Author: Jon Lee

Publisher: Springer Science & Business Media

Published: 2011-12-02

Total Pages: 687

ISBN-13: 1461419271

DOWNLOAD EBOOK

Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.


Numerical Methods and Optimization

Numerical Methods and Optimization

Author: Jean-Pierre Corriou

Publisher: Springer Nature

Published: 2022-01-04

Total Pages: 730

ISBN-13: 3030893669

DOWNLOAD EBOOK

This text, covering a very large span of numerical methods and optimization, is primarily aimed at advanced undergraduate and graduate students. A background in calculus and linear algebra are the only mathematical requirements. The abundance of advanced methods and practical applications will be attractive to scientists and researchers working in different branches of engineering. The reader is progressively introduced to general numerical methods and optimization algorithms in each chapter. Examples accompany the various methods and guide the students to a better understanding of the applications. The user is often provided with the opportunity to verify their results with complex programming code. Each chapter ends with graduated exercises which furnish the student with new cases to study as well as ideas for exam/homework problems for the instructor. A set of programs made in MatlabTM is available on the author’s personal website and presents both numerical and optimization methods.


A Derivative-free Two Level Random Search Method for Unconstrained Optimization

A Derivative-free Two Level Random Search Method for Unconstrained Optimization

Author: Neculai Andrei

Publisher: Springer Nature

Published: 2021-03-31

Total Pages: 126

ISBN-13: 3030685179

DOWNLOAD EBOOK

The book is intended for graduate students and researchers in mathematics, computer science, and operational research. The book presents a new derivative-free optimization method/algorithm based on randomly generated trial points in specified domains and where the best ones are selected at each iteration by using a number of rules. This method is different from many other well established methods presented in the literature and proves to be competitive for solving many unconstrained optimization problems with different structures and complexities, with a relative large number of variables. Intensive numerical experiments with 140 unconstrained optimization problems, with up to 500 variables, have shown that this approach is efficient and robust. Structured into 4 chapters, Chapter 1 is introductory. Chapter 2 is dedicated to presenting a two level derivative-free random search method for unconstrained optimization. It is assumed that the minimizing function is continuous, lower bounded and its minimum value is known. Chapter 3 proves the convergence of the algorithm. In Chapter 4, the numerical performances of the algorithm are shown for solving 140 unconstrained optimization problems, out of which 16 are real applications. This shows that the optimization process has two phases: the reduction phase and the stalling one. Finally, the performances of the algorithm for solving a number of 30 large-scale unconstrained optimization problems up to 500 variables are presented. These numerical results show that this approach based on the two level random search method for unconstrained optimization is able to solve a large diversity of problems with different structures and complexities. There are a number of open problems which refer to the following aspects: the selection of the number of trial or the number of the local trial points, the selection of the bounds of the domains where the trial points and the local trial points are randomly generated and a criterion for initiating the line search.


Modern Numerical Nonlinear Optimization

Modern Numerical Nonlinear Optimization

Author: Neculai Andrei

Publisher: Springer Nature

Published: 2022-10-18

Total Pages: 824

ISBN-13: 3031087208

DOWNLOAD EBOOK

This book includes a thorough theoretical and computational analysis of unconstrained and constrained optimization algorithms and combines and integrates the most recent techniques and advanced computational linear algebra methods. Nonlinear optimization methods and techniques have reached their maturity and an abundance of optimization algorithms are available for which both the convergence properties and the numerical performances are known. This clear, friendly, and rigorous exposition discusses the theory behind the nonlinear optimization algorithms for understanding their properties and their convergence, enabling the reader to prove the convergence of his/her own algorithms. It covers cases and computational performances of the most known modern nonlinear optimization algorithms that solve collections of unconstrained and constrained optimization test problems with different structures, complexities, as well as those with large-scale real applications. The book is addressed to all those interested in developing and using new advanced techniques for solving large-scale unconstrained or constrained complex optimization problems. Mathematical programming researchers, theoreticians and practitioners in operations research, practitioners in engineering and industry researchers, as well as graduate students in mathematics, Ph.D. and master in mathematical programming will find plenty of recent information and practical approaches for solving real large-scale optimization problems and applications.


Advanced Optimization for Process Systems Engineering

Advanced Optimization for Process Systems Engineering

Author: Ignacio E. Grossmann

Publisher: Cambridge University Press

Published: 2021-03-25

Total Pages: 205

ISBN-13: 1108831656

DOWNLOAD EBOOK

A unique text covering basic and advanced concepts of optimization theory and methods for process systems engineers. With examples illustrating key concepts and algorithms, and exercises involving theoretical derivations, numerical problems and modeling systems, it is ideal for single-semester, graduate courses in process systems engineering.


Emerging Technologies in Hydraulic Fracturing and Gas Flow Modelling

Emerging Technologies in Hydraulic Fracturing and Gas Flow Modelling

Author: Kenneth Imo-Imo Israel Eshiet

Publisher: BoD – Books on Demand

Published: 2022-11-02

Total Pages: 174

ISBN-13: 1839684666

DOWNLOAD EBOOK

Emerging Technologies in Hydraulic Fracturing and Gas Flow Modelling features the latest strategies for exploiting depleted and unconventional petroleum rock formations as well as simulating associated gas flow mechanisms. The book covers a broad range of multivarious stimulation methods currently applied in practice. It introduces new stimulation techniques including a comprehensive description of interactions between formation/hydraulic fracturing fluids and the host rock material. It provides further insight into practices aimed at advancing the operation of hydrocarbon reservoirs and can be used either as a standalone resource or in combination with other related literature. The book can serve as a propaedeutic resource and is appropriate for those seeking rudimentary information on the exploitation of ultra-impermeable oil and gas reservoirs. Professionals and researchers in the field of petroleum, civil, oil and gas, geotechnical and geological engineering who are interested in the production of unconventional petroleum resources as well as students undertaking studies in similar subject areas will find this to be an instructional reference.