The idea of interfacing minds with machines has long captured the human imagination. Recent advances in neuroscience and engineering are making this a reality, opening the door to restoration and augmentation of human physical and mental capabilities. Medical applications such as cochlear implants for the deaf and neurally controlled prosthetic limbs for the paralyzed are becoming almost commonplace. Brain-computer interfaces (BCIs) are also increasingly being used in security, lie detection, alertness monitoring, telepresence, gaming, education, art, and human augmentation. This introduction to the field is designed as a textbook for upper-level undergraduate and first-year graduate courses in neural engineering or brain-computer interfacing for students from a wide range of disciplines. It can also be used for self-study and as a reference by neuroscientists, computer scientists, engineers, and medical practitioners. Key features include questions and exercises in each chapter and a supporting website.
This book explains how computers interact with the world around them and therefore how to make them a useful tool. Topics covered include descriptions of all the components that make up a computer, principles of data exchange, interaction with peripherals, serial communication, input devices, recording methods, computer-controlled motors, and printers. In an informative and straightforward manner, Graham Dixey describes how to turn what might seem an incomprehensible 'black box' PC into a powerful and enjoyable tool that can help you in all areas of your work and leisure. With plenty of handy tips and clear illustrations this book can improve your computer system, and even shows new uses for old kit such as motor control.
A recognizable surge in the field of Brain Computer Interface (BCI) research and development has emerged in the past two decades. This book is intended to provide an introduction to and summary of essentially all major aspects of BCI research and development. Its goal is to be a comprehensive, balanced, and coordinated presentation of the field's key principles, current practice, and future prospects.
For generations, humans have fantasized about the ability to create devices that can see into a person’s mind and thoughts, or to communicate and interact with machines through thought alone. Such ideas have long captured the imagination of humankind in the form of ancient myths and modern science fiction stories. Recent advances in cognitive neuroscience and brain imaging technologies have started to turn these myths into a reality, and are providing us with the ability to interface directly with the human brain. This ability is made possible through the use of sensors that monitor physical processes within the brain which correspond with certain forms of thought. Brain-Computer Interfaces: Applying our Minds to Human-Computer Interaction broadly surveys research in the Brain-Computer Interface domain. More specifically, each chapter articulates some of the challenges and opportunities for using brain sensing in Human-Computer Interaction work, as well as applying Human-Computer Interaction solutions to brain sensing work. For researchers with little or no expertise in neuroscience or brain sensing, the book provides background information to equip them to not only appreciate the state-of-the-art, but also ideally to engage in novel research. For expert Brain-Computer Interface researchers, the book introduces ideas that can help in the quest to interpret intentional brain control and develop the ultimate input device. It challenges researchers to further explore passive brain sensing to evaluate interfaces and feed into adaptive computing systems. Most importantly, the book will connect multiple communities allowing research to leverage their work and expertise and blaze into the future.
What Is BCI2000? BCI2000 is a general-purpose software platform for brain–computer interface (BCI) research. It can also be used for a wide variety of data acquisition, stimulus p- sentation, and brain monitoring applications. BCI2000 has been in development since 2000 in a project led by the Brain–Computer Interface R&D Program at the Wadsworth Center of the New York State Department of Health in Albany, New York, USA, with substantial contributions by the Institute of Medical Psychology and Behavioral Neurobiology at the University of Tübingen, Germany. In addition, many laboratories around the world, most notably the BrainLab at Georgia State University in Atlanta, Georgia, and Fondazione Santa Lucia in Rome, Italy, have also played an important role in the project’s development. Mission The mission of the BCI2000 project is to facilitate research and the development of applications in all areas that depend on real-time acquisition, processing, and feedback of biosignals. Vision Our vision is that BCI2000 will become a widely used software tool for diverse areas of research and development.
This book provides a practical way to discover how to use a computer to control external devices via the Com Port, the Parallel Printer Port, or the Parallel Programmable Interface Port. It also introduces students to using a High Level language to read and control these devices via a series of programming exercises using C, and unlike many other texts, introduces hardware and software side by side. The book aims to facilitate independent learning, with numerous practical experiments and programming exercises. Therefore, professionals and enthusiasts will also find this text an ideal way of getting up and running in this important area of microelectronics. Computer Interfacing is designed for a student audience ranging from BTEC National Electronics to first year degree modules. In particular the content has been structured to follow the Microprocessor Systems set unit in the new BTEC Higher National scheme. George Smith brings to bear 16 years of lecturing experience in this highly practical book. Essential information required to gain qualifications Syllabus match for new HN unit Accessible and easy to follow for students of all abilities
The idea of interfacing minds with machines has long captured the human imagination. Recent advances in neuroscience and engineering are making this a reality, opening the door to restoration and augmentation of human physical and mental capabilities. Medical applications such as cochlear implants for the deaf and neurally controlled prosthetic limbs for the paralyzed are becoming almost commonplace. Brain-computer interfaces (BCIs) are also increasingly being used in security, lie detection, alertness monitoring, telepresence, gaming, education, art, and human augmentation. This introduction to the field is designed as a textbook for upper-level undergraduate and first-year graduate courses in neural engineering or brain-computer interfacing for students from a wide range of disciplines. It can also be used for self-study and as a reference by neuroscientists, computer scientists, engineers, and medical practitioners. Key features include questions and exercises in each chapter and a supporting website.
This book is about the field of brain-computer interfaces (BCI) and the unique and special environment of active implants that electrically interface with the brain, spinal cord, peripheral nerves, and organs. At the heart of the book is the matter of repairing and rehabilitating patients suffering from severe neurologic impairments, from paralysis to movement disorders and epilepsy, that often requires an invasive solution based on an implanted device. Past achievements, current work, and future perspectives of BCI and other interactions between medical devices and the human nervous system are described in detail from a pragmatic point of view. Reviews the Active Implantable Medical Devices (AIMDs) industry and how it is moving from cardiac to neuro applications Clear, easy to read, presentation of the field of neuro-technologies for human benefit Provides easy to understand explanations about the technical limitations, the physics of implants in the human body, and realistic long terms perspectives
Brain–Computer Interfaces Handbook: Technological and Theoretical Advances provides a tutorial and an overview of the rich and multi-faceted world of Brain–Computer Interfaces (BCIs). The authors supply readers with a contemporary presentation of fundamentals, theories, and diverse applications of BCI, creating a valuable resource for anyone involved with the improvement of people’s lives by replacing, restoring, improving, supplementing or enhancing natural output from the central nervous system. It is a useful guide for readers interested in understanding how neural bases for cognitive and sensory functions, such as seeing, hearing, and remembering, relate to real-world technologies. More precisely, this handbook details clinical, therapeutic and human-computer interfaces applications of BCI and various aspects of human cognition and behavior such as perception, affect, and action. It overviews the different methods and techniques used in acquiring and pre-processing brain signals, extracting features, and classifying users’ mental states and intentions. Various theories, models, and empirical findings regarding the ways in which the human brain interfaces with external systems and environments using BCI are also explored. The handbook concludes by engaging ethical considerations, open questions, and challenges that continue to face brain–computer interface research. Features an in-depth look at the different methods and techniques used in acquiring and pre-processing brain signals, extracting features, and classifying the user's intention Covers various theories, models, and empirical findings regarding ways in which the human brain can interface with the systems or external environments Presents applications of BCI technology to understand various aspects of human cognition and behavior such as perception, affect, action, and more Includes clinical trials and individual case studies of the experimental therapeutic applications of BCI Provides human factors and human-computer interface concerns in the design, development, and evaluation of BCIs Overall, this handbook provides a synopsis of key technological and theoretical advances that are directly applicable to brain–computer interfacing technologies and can be readily understood and applied by individuals with no formal training in BCI research and development.